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The Yang-Mills functional integral is studied in an axial variant of ’t Hooft’s maximal Abelian gauge. In this
gauge Gauss’ law can be completely resolved resulting in a description in terms of unconstrained variables.
Compared to previous work along this line starting with the work of Goldstone and Jackiw one ends up here
with half as many integration variables, in addition to a field living in the Cartan subgroup of the gauge group
and inD21 dimensions. The latter is of particular relevance for the infrared behavior of the theory. Keeping
only this variable we calculate the Wilson loop and find an area law.@S0556-2821~97!00404-9#
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I. INTRODUCTION

It is a common belief that the fundamental interactions are
described by gauge theories. This is, in particular, true for
strong interactions, which are assumed to be described by
QCD. This theory has been tested in the high energy regime,
where perturbation theory is applicable due to asymptotic
freedom. On the other hand, low energy hadron physics re-
quires a nonperturbative treatment of QCD. This regime,
which is ultimately related to the confinement problem, is
much less understood. Perturbative calculations indicate that
the confinement phenomenon is due to the non-Abelian na-
ture of Yang-Mills theory. Furthermore, one-loop calcula-
tions show that the perturbative Yang-Mills vacuum is un-
stable @1# and various models of the Yang-Mills vacuum
have been designed as, for example, the Copenhagen
vacuum@2#, the instanton liquid model@3#, which extends
the instanton gas picture@4#, the dual superconductor@5#, or
the stochastic vacuum@6#. The various models aim at differ-
ent aspects of strong interaction; e.g., the instanton models
seem to be suited to explain spontaneous breaking of chiral
symmetry @7#, while the Copenhagen vacuum, stochastic
vacuum, or the dual superconductor focus on the color con-
finement.

A rigorous approach to strong coupling Yang-Mills
theory is provided by lattice Monte Carlo calculations@8#,
which have been developed to a high level of sophistication.
This approach has given much insight into the nature of the
Yang-Mills vacuum. The great successes of lattice calcula-
tions are in low energy hadron physics~where confinement is
perhaps not of much relevance! @9#. However, a complete
understanding of the Yang-Mills theory will probably not be
provided by the lattice simulations alone but requires also
analytic tools. For some applications of lattice QCD a sepa-
ration of scales is required and input from perturbation
theory is needed~see, e.g.,@10#!. Also the interpretation of
the lattice results sometimes requires or at least is facilitated
by modeling properties of the Yang-Mills-vacuum-like cor-

relation functions, which in turn are fed by the lattice calcu-
lations ~see, e.g.,@11#!.

Several analytic approaches have been proposed to ex-
plore the nonperturbative features of strong coupling Yang-
Mills theory, e.g., the strong coupling lattice expansion@8# or
the small volume expansion@12,13#. A crucial point in all
analytical approaches to Yang-Mills theory is gauge fixing,
which cannot be performed in a unique way due to the ex-
istence of Gribov copies@14#.

Most analytic approaches to Yang-Mills theory are based
on the Weyl gaugeA050, where Gauss’ law has to be in-
forced as a constraint to guarantee local gauge invariance
@17#. Violation of Gauss’ law generates color charges during
the time evolution and, by this leaking of color, confinement
is lost. This fact has recently been emphasized in Ref.@18#,
where explicit projection on gauge-invariant states has been
performed in the construction of the path integral represen-
tation of the Yang-Mills transition amplitude. Not surpris-
ingly projection onto gauge-invariant states requires a com-
pact integration measure~the Haar measure of the gauge
group!, reminiscent to the lattice approach.~In fact, the ap-
proach of Ref.@18# can be obtained from the lattice formu-
lation by taking the continuum limit in the spatial directions
only.!

Several approaches have been advocated, which explicitly
resolved the Gauss’ law constraint by changing variables,
resulting in a description in terms of a reduced number of
unconstraint variables. These approaches are based on the
Schrödinger functional formulation of Yang-Mills theory
@17#. References@19,20# use variants of the unitary gauge,
while in Ref. @21# the Coulomb gauge¹A50 was used.
References@19,20# basically end up in a description in terms
of gauge-invariant variables~further approaches along these
lines are proposed in@22,23#!.

Recently alternative descriptions of Yang-Mills theory in
terms of gauge-invariant variables constructed either from
the magnetic@24# or electric@25# fields have been proposed.
In Ref. @26# the long wavelength~strong coupling! limit of
the formulation of Ref.@24# has been studied, exploiting
methods from the description of collective excitations of
atomic nuclei. Let us also mention an early attempt@27#
where the self-dual sector ofD54 Yang-Mills theory has*Permanent address.
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been formulated in terms of gauge-invariant variables. In a
similar fashion in Refs.@28,29# theD53 Yang-Mills func-
tional integral has been expressed in terms of the gauge-
invariant variables introduced in@24#.

Recently, QCD on a spatial torus has been considered in
the Weyl gaugeA050 in the canonical quantization ap-
proach@31#. Using a~partial! axial gauge, the resolution of
Gauss’ law has been achieved by applying unitary gauge
transformations, which rely on quantum field operators. This
results in a Schro¨dinger description in terms of unconstraint
variables, where the resulting Hamiltonian is nonlocal. It is
fair to say that at the moment we have little experience with
solving functional Schro¨dinger equations in quantum field
theories; see, e.g.,@32#. Furthermore, even in the functional
~operator! approach matrix elements are given by
(D21)-dimensional functional integrals. Therefore it might
be more convenient to use the (D-dimensional! functional
integral representation from the very beginning. In the
present paper I perform a resolution of Gauss’ law in the
functional integral representation of Yang-Mills theory. For
this purpose I will use a variant of ’t Hooft’s maximum Abe-
lian gauge@15#, which is the analogue of the gauge used in
@31# to time-dependent classical fields. It is the hope that the
functional integral formulation will facilitate in finding ap-
propriate approximation schemes. Furthermore, the func-
tional integral approach provides more direct acccess to the
topological properties of the Yang-Mills vacuum and to nu-
merical simulations, exploiting Monte Carlo techniques.

The balance of the paper is as follows. In order to set
notation and conventions, in Sec. II the functional integral
description of Yang-Mills theory is briefly reviewed and
some relevant features are discussed. In Secs. III and IV we
fix the gauge and resolve the Gauss’ law constraint. The
Faddeev-Popov determinant is evaluated in Sec. V. In Sec.
VI the Wilson loop is evaluated, thereby including only the
dominant infrared unconstrained degrees of freedom. In Sec.
VII the electric field variables are integrated out, resulting in
a theory in unconstrained degrees of freedom of the gauge
potential. A short summary and some concluding remarks
are given in Sec. VIII. Some calculations are relegated to the
Appendixes.

II. HAMILTONIAN FORMULATION
OF GAUGE THEORIES

Below we briefly summarize the essential ingredients of
the path integral quantization of Yang-Mills theory. Special
emphasis is put on the implementation of gauge invariance.

We consider the gauge groupG5SU(N) with anti-
Hermitian generatorsTa satisfying the commutation relation

@Ta,Tb#5 f abcTc, ~2.1!

where f abc are the structure constants. We choose the stan-
dard normalization

tr~TaTb!52 1
2 dab. ~2.2!

Later on we will also make use of the generators in the
adjoint representation defined by

~ T̂a!bc52 f abc, ~2.3!

which satisfy the same commutation relation~2.1!. Through-
out the paper we shall indicate the adjoint representation by
the caret. For a quantityxa living in the gauge group we
define the fundamental and adjoint representations, respec-
tively, by

x5xaTa, x̂5xaT̂a. ~2.4!

We also use the Cartan decomposition of the gauge group

G5H^G/H, ~2.5!

where H5U(1)N21 denotes the Cartan subgroup of the
gauge group andG/H is the corresponding coset space. Fur-
thermore, we use the indices with index zero,a0 ,b0 , . . . , to
denote a generator of the Cartan subgroupTa0PH,
@Ta0,Tb0#50, while the indicesā,b̄, . . . are reserved for
generators of the coset space,G/H. Accordingly the gauge
potentialAi(x) is decomposed as

Ai5Ai
n1Ai

ch, ~2.6!

whereAi
n5Ai

a0Ta0 is the gauge potential of the Cartan sub-
groupH and Ai

ch lives in ~the algebra of! the coset space
G/H. With respect to~color! charges of the Cartan subgroup
H, Ai

n is neutral, whileAi
ch is charged.

We also introduce the covariant derivative by

Dm5]m1Am ~2.7!

and the field strength tensor

Fmn5@Dm ,Dn#5Fmn
a Ta,

Fmn
a 5]mAn

a2]nAm
a1 f abcAm

bAn
c . ~2.8!

Under a gauge transformationV(x)PSU(N) the gauge po-
tential transforms as

Am→Am
V5V~DmV†!5VAmV†1V~]mV†!. ~2.9!

In the Hamilton formulation of Yang-Mills theory, which is
based on the Weyl gauge

A0~x!50, ~2.10!

the dynamical variables are the spatial components of the
gauge potentialAi

a . We shall use spatially periodic boundary
conditions for the field variables

Ai
a~x1Lke

k!5Ai~x!, ~2.11!

whereek denotes a three-dimensional~spatial! unit vector, so
that we consider Yang-Mills theory on a three-dimensional
torus. We have not yet specified the boundary condition in
the time direction.

Let uC& denote an eigenstate ofAi(x), i.e.,
Ai(x)uC&5Ci(x)uC&, whereCi(x) is a classical field func-
tion. The gauge-invariant transition amplitude between static
initial and final field configurationsAi(x050,x)5Ci8(x) and
Ai(x05T,x)5Ci9(x) is defined by@33,18,34#

Z@C9,C8#5^C9ue2HTPuC8&, ~2.12!
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where

H5E d3xS g22 Ei
a~x!Ei

a~x!1
1

2g2
Bi
a~x!Bi

a~x! D
~2.13!

is the Yang-Mills Hamiltonian with bare coupling constant
g, electric field Ek

a(x)5d/ idAk
a(x), and magnetic field

Bk
a(x)5 1

2eki jFi j
a (x). Furthermore,P is the projector onto

gauge-invariant states,

PuC&5(
n

e2 inQE
G
Dm~Vn!uCVn&. ~2.14!

HereQ is the vacuum angle@17# and the functional integra-
tion with respect to the Haar measurem(V) of the gauge
group extends over all time-independent gauge transforma-
tions Vn(x) with winding numbern. For a gauge transfor-
mationV(x) the winding number is defined by

n@V#5
1

24p2E d3xe i jk tr~RiRjRk!, Rk5V]kV
†.

~2.15!

As usual we assume here that the gauge functionV(x) ap-
proaches a unique valueV` for uxu→`, so thatR3 can be
compactified toS3 andn@V# is a topological invariant.

For many purposes it is sufficient to consider the partition
function

Z5E DCi^Cue2HTPuC&, ~2.16!

which can be easily reduced to the standard form

Z5(
k
e2EkT, ~2.17!

with Ek being the energy eigenvalues. Using the complete-
ness of the eigenstatesuk& of H(Huk&5Ekuk&) andP25P it
can be rewritten as

Z5E DCi(
k

Ck~C!e2EkTCk* ~C!, ~2.18!

where

Ck~C!5^CuPuk& ~2.19!

are the gauge-‘‘invariant’’ energy eigenfunctionals, which
under a gauge transformationVn with winding numbern
transform as

Ck~C
Vn!5e2 inQCk~C!, ~2.20!

as is easily inferred from the explicit form of the projector
~2.14!. Assuming proper normalization of the energy eigen-
functionalsCk(C), i.e.,

E DCiCk* ~C!C l~C!5dkl , ~2.21!

Eq. ~2.18! reduces to the standard form~2.17!.

In Ref. @35# it was explicitly shown that the gauge-
invariant partition function~2.16! is given by the standard
functional integral representation

Z5E DAmdGFe
2SYM[A]1 iQn[S] , ~2.22!

where

SYM@A#5
1

4g2E d4xFmn
a ~x!Fmn

a ~x! ~2.23!

is the usual Yang-Mills action and

n@A#5
1

32p2E d4xFmn
a Fmn

a* ~2.24!

is the Pontryagin index withFmn* 5 1
2emnklFkl being the dual

field strength. The functional integration runs over all tem-
porally periodic gauge field configurationsAm(x05T)
5Am(x050) and it is understood that the gauge fixing is
included by the Faddeev-Popov method as indicated in Eq.
~2.22! by dGF.

At first sight one may wonder that Eq.~2.22! reproduces
the gauge-invariant partition function~2.16! inspite of the
missing Haar measure.1 However, as explicitly shown in@35#
the Haar measure arises from the Faddeev-Popov determi-
nant. Similar investigations have been previously performed
in Ref. @33#.

The equivalence proof between Eqs.~2.16! and ~2.22!
@35# relies only on the gauge invariance of the Hamiltonian
and holds therefore also true when fermions are included. In
this case the partition function is given by

Z5E DqDq̄E DAmexpS E q̄i ]”q1q̄A” q

2SYM@A#1 iQn@A# D , ~2.25!

where the fermion fields satisfy antiperiodic boundary con-
ditionsq(x05T)52q(x050). For later convenience we re-
write the partition function as

Z5E DqDq̄expS E q̄i ]”qDZYM@J#, ~2.26!

where

ZYM@J#5E DAmexpS 2SYM@A#1E JmAm1 iQn@A# D
~2.27!

is formally the partition function of a gauge field coupled to
an external color currentJm

a[q̄(lq/2)gmq. Equation~2.27!
defines the Lagrange representation, which is fully covariant.
For subsequent considerations it is more convenient to use
the Hamilton formulation which arises from Eq.~2.27! by

1In Ref. @18# it was claimed that the conventional functional inte-
gral representation~2.22! falls short of guaranteeing gauge invari-
ance in the nonperturbative regime.
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linearizing the (Foi)
2 term by means of an integration over

the electric field variableEi
a(x) which in view of Eq.~2.11!

has to satisfy the spatially periodic boundary condition
Ei(x1Lei)5Ei(x). Then theA0 field can be integrated out,
yielding the Gauss’ law constraint

E DA0expS i E d4xA0
a~x!Ga~x! D5d~Ga!, ~2.28!

where

G~A,E!5] iEi1@Ai ,Ei #1J0[@Di ,Ei #1J0 ~2.29!

is the generator of infinitesimal gauge transformations. Equa-
tion ~2.27! then becomes the Hamilton functional integral
representation of the partition function of Yang-Mills theory
in the presence of an external sourceJm5(J0,Ji), which
after continuing to Minkowski space and assumingQ50
reads2

Z@C9,C8,J#5E D~Ai ,Ei !)
xW

d„f a~A,E!…d„Ga~A,E!…

3)
x0

DetMab~x0!expH i

g2E d4x@Ei]0Ai2
1
2

3~Ei
aEi

a1Bi
aBi

a!2AiJi #J . ~2.30!

Here,D(Ai ,Ei) denotes the~flat! functional integral measure
over the gauge potentialAi

a and the electric fieldEi
a . Fur-

thermore, f a(A,E)50 is the gauge-fixing constraint and
DetMab(x,y), wherex05y0, is the Faddeev-Popov determi-
nant.

In the following two sections we will explicitly resolve
the Gauss’ law constraintd(Ga) and the gauge constraint
d( f a) in Eq. ~2.30!, leaving a functional integral over uncon-
strained, gauge-fixed variables.

III. GAUGE FIXING AND PARTIAL RESOLUTION
OF GAUSS’ LAW

Gauss’ law~2.29! Ga50 has the generic form

“Ea5ra, ra52@Ai ,Ei #
a2J0

a , ~3.1!

wherera is the total color charge density. Applying Gauss’
integration theorem it follows

R
]M
dSEa5Qa, Qa5E d3xra. ~3.2!

For periodic electric fields the electric flux through the sur-

face of the box, RdSE, vanishes. Consequently periodic

boundary conditions toEi
a(x) can only tolerate a vanishing

total charge:

Qa50. ~3.3!

For the resolution of Gauss’ law a proper choice of gauge
fixing is crucial. In the past a complete resolution of Gauss’
law has been achieved in the gaugeeaikEi

a50 for SU~2! in
Ref. @19# and an extension to SU~3! was considered in Ref.
@20#. There have been also attempts of a complete resolution
of Gauss’ law in the Coulomb gauge@21#. The Coulomb
gauge, which is singled out in QED by the absence of radia-
tion of static charges, has proved, however, to be inconve-
nient in non-Abelian gauge theories, in particular for an ex-
plicit resolution of Gauss’ law. In this respect axial types of
gauges are much more convenient as was already realized in
Refs. @36,37# and recently discussed in detail in Ref.@31#,
where an explicit resolution of Gauss’ law in the canonical
quantization approach has been performed. Below we will
perform an analogous resolution of Gauss’ law in the func-
tional integral approach. For this purpose it is convenient to
choose the three-axis as the preferred direction of the axial
gauge and divide the Gauss’ law generator into parts parallel
and perpenticular to the three-axis:

G~x!5D̂3E31G' , G'5D̂'E'1J0 . ~3.4!

If D̂3 were regular, the Gauss’ lawG50 could be easily
resolved, leading to an elimination ofE3. Unfortunately, as
we will explicitly see below, on the torusD̂3 has always zero
modes, independently of the used gauge. In fact, sinceD̂3
transforms gauge covariantly, its eigenvalues are indepen-
dent of the gauge. Nevertheless, we can exploit the gauge
freedom to castD̂3 in as simple a form as possible. From this
point of view the axial gaugeA350 would be preferable.
However, this gauge condition conflicts with the periodic
boundary condition. This can be easily seen by considering
the Polyakov line operator

P3~x!5PexpS R dx38A3~ x̄,x38! D , ~3.5!

whereP denotes path ordering and the integration runs from
a point3 x5( x̄,x3) along the three-axis to the point
x5( x̄,x31L). Because of the periodic boundary condition
onA3, the integration in Eq.~3.5! runs over a closed loop but
nevertheless due to the path orderingP3(x) depends on the
starting pointx. Under a gauge transformation this quantity
transforms as

2In fact in the derivation of the path integral representation~2.27!
the Hamilton formulation~2.30! arises in an intermediate step of the
calculation. In the present case the Hamilton and Lagrange form are
obviously completely equivalent. But in more general cases~e.g., in
theories with momentum-dependent masses! the Hamilton form is
obviously the more fundamental representation and the Lagrange
form may even not exist. Furthermore, the path integral derivation
shows that, while the integral over the gauge field configurations
has to be taken with temporally periodic boundary conditions

Ai(x
05T,xW )5Ai(x

050,xW ), the integration over the electric fields
is not constrained by any temporal boundary condition.

3Here and in the following we use the convention
(x)5(x0,x)5( x̄,x3).
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P3~x!→P3V~x!5V~x!P3~x!V†~x!, ~3.6!

and one can obviously choose a gauge in whichP3(x) is
diagonal:

P3V~x!5ea3~x!L, a3~x!5a3
c0Tc0. ~3.7!

However, it is impossible to gauge transform4 P3(x) to
P3(x)51.

For the resolution of Gauss’ law it is convenient to follow
Ref. @31# and use the gauge

A3
ch~x!50, or A3

ā~x!50. ~3.8!

This condition, of course, does not fix the gauge completely
but allows still for arbitrary Abelian gauge transformations
v(x)PH. We will later make use of this freedom. Let us
also mention that the gauge transformation necessary to
bring a given gauge fieldAi(x) into the form~3.8! requires
in general also topologically nontrivial gauge transforma-
tions.

In the gauge~3.8! the operatorD̂3 is block diagonal with
respect to the color neutral and charged components:

D̂3
ab5S ]3d

a0b0 0

0 D̂3
ā b̄ D , ~3.9!

since f a0b0c50. Hence in this gauge the neutral part of the
Gauss’ law generator simplifies to

Ga0~x!5]3E3
a01G

'

a0 . ~3.10!

On the space of periodic functionsjn(x)5eivnx3,
vn52pn/L the operator]3 has a zero eigenvalue (n50)
corresponding to ax3-independent eigenfunction. For sim-
plicity of notation we have set hereL5L3. The correspond-
ing projection ofE3

n onto this zero mode,

e3~ x̄!5
1

LE0
L

dx3E3
n~ x̄,x3!, ~3.11!

does not enterGn(x), Eq.~3.4!, and is hence not restricted by
Gauss’ law.

Since the eigenfunctions of]3 belonging to zero and non-
zero eigenvalues are orthogonal in the Hilbert space of peri-
odic functions, the neutral part of the Gauss’ law constraint
separates in the two independent constraints corresponding
to the subspaces of the zero and nonzero eigenvalues. Defin-
ing

g'5
1

LE0
L

dx3G'
n , G8'

n5G'
n2g' , ~3.12!

we have

d~Gn!5d~]3E83
n1G8'

n !d~g'!5d~]3E83
n1G'

n !d~g'!,
~3.13!

where

E385E32e3 ~3.14!

lives entirely in the subspace of eigenfunctions with nonzero
eigenvalues of]3. The constraint of the firstd function can
be easily resolved. Defining by]38 the operator resulting from
]3 when the zero eigenvalue is removed, we obtain~with
]3E83

n5]38E83
n)

d~]38E83
n1G'

n !5
1

det]38
dSE83

n1
1

]38
G'
n D . ~3.15!

Hence the neutral part of Gauss’ law eliminates the variable
E83

n . In addition we now exploit the residual invariance un-
der Abelian gauge transformations to remove also the corre-
sponding conjugate field variable,

A385A32a3 , a35
1

LE dx3A3
n , ~3.16!

by imposing the gauge condition

]3A3
n~x!50. ~3.17!

Since ]3A83
n5]38A83

n , this gauge impliesA83
n(x)50 and

hence leaves fromA3
n(x) only the x3-independent part

a3( x̄).
By construction@see Eqs.~3.16! and ~3.11!# the reduced

Abelian fieldsa3( x̄) and e3( x̄) are canonically conjugated
variables. Note also that the change of variables fromA3

n to
(A83

n ,a3) @and correspondingly fromE3
n to (E83

n ,e3)# does
not yield any nontrivial Jacobian sinceA83

n and a3 are or-
thogonal coordinates in the sense that they belong to or-
thogonal subspaces of the Hilbert space of periodic eigen-
functions ofi ]3.

The gauge condition~3.17! has also the advantage that it
enormously simplifies the operator~3.9!,

D̂3
ā b̄5d ā b̄]31â3

ā b̄~ x̄!5:d̂3
ā b̄ , ~3.18!

which enters the charged part of Gauss’ law~3.4!,

G ā5d̂3
ā b̄E3

b̄1G'
ā . ~3.19!

@The evaluation of the eigenvalues and hence the inversion
of d̂3 become trivial sincea3( x̄) is independent ofx3; see
below.# Let us also mention that Eqs.~3.8! and~3.17! define
a variant of ’t Hooft’s maximal Abelian gauge@15#, which
preserves invariance underx3-independent Abelian gauge
transformations.

For the time being, let us assume thatd̂3
a b̄ has no zero

eigenvalue in the charged subspace.@We will later see that
the system dynamically avoids configurationsa3( x̄)50, giv-
ing rise to zero modes ofd̂3.# The charged part of the Gauss’
law can now be used to eliminate the charged part ofE3 by
using

4This can be also easily seen in the lattice formulation. Starting at
x350 one can bring the linksU3(x)5exp@2aA3(x)# to the gauge
U3(x)51 except for the last link terminating atx35L, which can-
not be gauged away due to the periodic boundary condition.
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d~G ā !5
1

detd̂3
d„E3

ā1~ d̂3
21! ā b̄G'

b̄
…. ~3.20!

Later we will observe that the corresponding functional de-

terminant detd̂3
ā b̄ will be canceled by the Faddeev-Popov

determinant.
We can use now the two constraints~3.15! and ~3.20!

arising from Gauss’ law to integrate out explicitly the elec-
tric field variables E83

c0 ,E3
ā leaving from E3 only the

x3-independent neutral parte3, Eq. ~3.11!. Furthermore, the
two gauge constraints~3.8! and ~3.17! eliminate the gauge
variablesA3

ch andA83
n , respectively, leaving from the gauge

potential A3 only the neutralx3-independent parta3( x̄).
Since the changes of variables fromE3

c0 to E83
c0 ,e3 and

analogously fromA3
c0 to A83

c0 ,a3 are trivial; i.e., the corre-
sponding Jacobians equal 1, we then obtain, from Eq.~2.30!,

Z@J#5E D~A' ,a3 ,E' ,e3!)
x

d„ f̄ c0~A!…d~g'
n !

3)
x0

DetMab@Det~]38!Detd̂3
ā b̄#21

3expH i

g2 FLE d3x@e3]0a32
1
2 e3~ x̄!e3~ x̄!#G

1E d4xE'
a ]0A'

a2
1

2E d4x

3$@ d̂3
21G'

ch#21~]38
21G8'

n !21E'E'1B2%J .
~3.21!

Hered„ f̄ c0(A)… denotes the gauge condition necessary to
fix the residual invariance underx3-independent Abelian
gauge transformations, which is left by the constraints~3.8!
and~3.17!. This residual gauge will be fixed in the following
section when we resolve the residual Gauss’ lawg'50.

IV. RESOLUTION OF THE RESIDUAL GAUSS’ LAW

The residual Gauss’ law constraint

g'5
1

LE dx3~¹'–E'
n1@A' ,E'#n1J0

n! ~4.1!

can be used to remove thex3-independent part ofE'
n which

is longitudinal in the 1-2 plane (i51,2) defined by

e' :5¹'

1

D'8

1

LE dx3¹'E'
n[ lE'

n , ~4.2!

whereD'8 is the two-dimensional Laplacian,¹'–¹' , in the
Hilbert space of periodic functions with the zero mode omit-
ted. Its inverse is defined in the space of periodic functions
by the Green’s function

G~2!~x'9 ,x'8 !5^x'9 u
1

2D'8
ux8&

5
1

~2p!2 (
n'Þ0

1

n'
2
ein'•~x'9 2x'8 !2p/L,

n'5~n1 ,n2!, ~4.3!

which obviously satisfies periodic boundary conditions. Note
that the longitudinal projectorl defined by Eq.~4.2! is in fact
an orthogonal projector,l • l5 l . This follows from the rela-
tion

E d2x'9 ^xun'ux9&^x9u
1

n'8
ux8&5d~2!~x'2x'8 !2

1

L2
,

~4.4!

where

d~2!~x' ,y'!5
1

L2(k'

eik'~x'2y'!, k'5S 2p

L1
n1 ,

2p

L2
n2D ,
~4.5!

is the two-dimensional periodic d function
@d (2)(x'1eiL i ,y')5d (2)(x' ,y')# and the last term in Eq.
~4.4! arises from the fact that inn'8 , Eq.~4.3!, the zero mode
n15n250, is excluded. This term, however, does not con-
tribute whenl acts on vector fieldsVi(x) periodic inx1 and
x2. In fact, from the definition of the longitudinal fielde' ,
Eq. ~4.2!, we find, by using Eq.~4.4!,

¹'–e'5
1

LE dx3¹'E'
n2

1

LL1L2
E d3x¹'–E'

n , ~4.6!

where the last term vanishes for periodic electric fields, so
that we obtain

¹'e'5
1

LE dx3¹'E'
n . ~4.7!

The residual Gauss’ law~4.1! then simplifies to

g'5¹'–e'2r~2!50, ~4.8!

where

r~2!52
1

LE dx3~@A' ,E'#n1J0
n!. ~4.9!

Since, by definition,e', Eq. ~4.2!, is a curl-free, two-
dimensional vector field,¹'3e'50, it has the representa-
tion

e'52¹'w~x'!, ~4.10!

where the scalar potentialw(x) follows from the residual
Gauss’ law~4.8!:

w~x'!5E d2y'G
~2!~x' ,y'!r~2!~y'!. ~4.11!
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In fact, inserting Eqs.~4.11! into ~4.10! and taking the diver-
gence we find, with the help of Eq.~4.4!,

¹'–e'5r~2!2 r̄, r̄5
1

L1L2
E d2x'r~2!5

1

LL1L2
Qn,

~4.12!

whereQn is the total charge~in the Cartan subgroup!, which
according to Eq.~3.3! has to vanish for periodicEi

a fields, so
that r̄50 and Eq.~4.10! solves, in fact, Eq.~4.8!.

For nonvanishing total chargeQnÞ0 Gauss’ law requires
one to abandon the periodic boundary condition to the elec-
tric fields and the second term in Eq.~4.6! no longer van-
ishes. Even in this case Eq.~4.8! is still solved by Eqs.~4.10!
and ~4.11!. Therefore the resolution of the residual part of
Gauss’ law leads to the elimination of the longitudinal part
e' of the neutral vector fieldE'

n and we are left with the
transversal part

E'8 5E'2e' ~4.13!

as the dynamical quantity.
Note that only the charged partsA'

ch andE'
ch enterr (2),

Eq. ~4.9!, and thuse' . Furthermore,e' and E8'
n live in

orthogonal subspaces of the Hilbert space of periodic func-
tions in x3. Therefore the change of variables from
(E'

n ,E'
ch) to (E'

n5E8'
n1e' ,E'

ch) does not give rise to any
nontrivial Jacobian. Let us also emphasize that after resolu-
tion of Gauss’ law~4.8!, e' is not an integration variable but
a function ofE'

ch,A'
ch and independent of the remaining in-

tegration variablesE8'
n , A'

n , etc.
We can exploit now the residual invariance under

x3-independent Abelian gauge transformations, left by the
constraints~3.8! and ~3.17!, to remove the field

a'~ x̄!5~ lA'
n !~ x̄!, ~4.14!

canonically conjugated toe' . Since by definition of the lon-
gitudinal projector l , Eq. ~4.2!, this field is curl free,
¹'3a'50, and, for periodic fieldsA'(x), satisfies the re-
lation @cf. Eq. ~4.7!#

¹'–a'~ x̄!5
1

LE dx3¹'–A'
n , ~4.15!

it suffices to require the gauge

1

LE dx3¹'–A'
n ~ x̄,x3!50 ~4.16!

to makea' vanishing:

a'50. ~4.17!

In the following we will denote byA'8 the field satisfying the
gauge condition~4.16!, i.e.,

A'8 5A'2a' . ~4.18!

Sincee' anda' live in the Cartan subgroup, we can trivially
extend Eqs.~4.13! and ~4.18! to the charged field compo-
nents, where they read

E8'
ch5E'

ch, A8'
ch5A'

ch. ~4.19!

We can then expresse' defined by Eqs.~4.10! and~4.11! as

e'~ x̄!5¹'
x 1

LE d3yG~2!~x' ,y'!~@A'8 ,E'8 #n1J0
n!~x0,yW !.

~4.20!

~Note that only the charge fieldsE'
ch,A'

ch enter the commu-
tator.!

Similarly we can express the Gauss law generatorG' ,
Eq. ~3.4!, in terms of the new variables

G'
n5¹'–~E8'

n1e'!1@A'8 ,E'8 #n1J0
n ,

G'
ch5¹'–E8'

ch1@A'8 ,E'8 1e'#1J0
ch. ~4.21!

Furthermore, sincee'( x̄), Eq. ~4.20!, is independent ofx3,
i.e., ]3e'5]38e350, it drops out from

]38
21G'

n[
1

]38
2 ]38G'

n , ~4.22!

and the neutral part of the Gauss’ law generator~4.21! can be
replaced by

G
'

c05¹'–E8'

c01@A'8 ,E'8 #c01J0
c0 . ~4.23!

Recall that the change of integration variables from
E'
n→(E8'

n ,e') yields a trivial Jacobian equal to 1 since
E8'

n ande' are orthogonal components ofE'
n in the Hilbert

space of periodic functions inx3. The same is true for the
change of variables fromA'

n to (A8'
n ,a'). Therefore, after

complete resolution of Gauss’ law and implementation of the
gauge-fixing contraints, we are left with the following func-
tional integral representation of Yang-Mills theory:

Z5E D~E'8 ,e3 ,A'8 ,a3!)
x0

DetMabDet21~ d̂38!

3expH i

g2 FLE d3x̄~e3]0a32
1
2e3e3!

1E d4xE'8 ]0A'8 1E ~a3J31A'8 J'8 !

2 1
2 E $~ d̂83

21G'!21E'8E'8 1e'
21@B~A8!#2%G J ,

~4.24!

where the residual Abelian gauge constraint~4.16! has been
used to replace the perpendicular fieldA' by its two-
dimensional transversal partA'8 ; see Eq.~4.18!. Further-
more, the magnetic fieldB(A8) is defined in terms of the
reduced field variables due to the implementation of Gauss’
law by

Fi35@Di8 ,d3#, d35]31a3 , d385]381a3 ,

Fi j5@Di8 ,Dj8#, Di85] i1Ai8 . ~4.25!
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Let us also emphasize that there are no cross terms between
the reduced electric fieldE'8 and the static electric fielde' .
This is a consequence of*dx3¹'E'8 50, which holds due to
the periodicity of the fields.

It remains to calculate the Faddeev-Popov determinant
which is done in the next section.

V. EVALUATION OF THE FADDEEV-POPOV
DETERMINANT

For the above chosen gauge the Faddeev-Popov determi-
nant is straightforwardly evaluated. The two Abelian gauge-
fixing conditions~3.17! and ~4.16! are independent of each
other; i.e., they belong to orthogonal subspaces of the Hilbert
space of periodic functions inx3P@0,L#. Both conditions
can therefore be absorbed into a single gauge constraint for
the neutral component of the gauge field:

f a0~x!5]3A3
a0~ x̄,x3!1¹'

1

LE0
L

dx3A'

a0~ x̄,x3!. ~5.1!

Furthermore, the gauge~3.8! defines a color-charged
gauge functional

f ā5A3
ā . ~5.2!

For the above gauge functionals~5.1! and~5.2! the Faddeev-
Popov kernelMab(x,y) becomes (x05y0)

Mab0~x,y!5D̂3
ab0~x!¹3

yd~3!~x2y!

1
1

L
D̂

'

ab0~x!¹'
y d~2!~x'2y'!,

Ma b̄~x,y!5D̂3
a b̄~x!d~3!~x2y!. ~5.3!

This expressions hold so far for arbitrary gauge field con-
figurations. We need, however, these expressions only on the
gauge manifold, i.e., for those field configurations which ful-
fill the above chosen gauge constraints. Usingf ab0c050,
which impliesâ3

ab050, the Faddeev-Popov kernel reduces at
the chosen gauge orbits to

Mab~x,y![SMa0b0 Ma0b̄

M āb0 M ā b̄ D 5S 2da0b0S ¹3
x¹3

xd~3!~x2y!1
1

L
¹'
x ¹'

x d~2!~x'2y'! D 0

2
1

L
Â

'

āb0~x!–¹'
x d~2!~x'2y'! d̂3

ā b̄~x!d~3!~x2y!
D . ~5.4!

Since this matrix has triangle form, we find for the Faddeev-Popov determinant, finally,

DetMab~x,y!5DetF2da0b0S ¹3
x¹3

xd~3!~x2y!1
1

L
¹'
x ¹'

x d~2!~x'2y'! D GDet@ d̂3ā b̄d~3!~x2y!#. ~5.5!

It factorizes into contributions arising from the Cartan subgroup~first factor! and the coset space. The former one is an
irrevelant constant and will be dropped in the following. The contribution from the coset space can be easily calculated since

the eigenvalues ofd̂3
ā b̄ are analytically known; see Appendix A. But for the moment we do not need the explicit form of

Det d̂3.
A glance at Eq.~5.5! shows that~the nontrivial part of! the Faddeev-Popov determinant cancels precisely the determinant

(Det d̂3)
21 arising from the resolution of Gauss’ law. Consequently Eq.~4.24! reduces to

Z5E D~E'8 ,e3 ,A'8 ,a3!expH i

g2 FLE d3x̄~e3]0a32
1
2 e3e3!1E d4xE'8 ]0A'8 2 1

2 E d4x

3$~ d̂83
21G'!21E'8E'8 1e'

21@B~A8!#2%G J . ~5.6!

This is the desired functional integral representation of
Yang-Mills theory in unconstrained, gauge-fixed variables,
resulting from a complete resolution of Gauss’ law. Note that
in the unconstrained theory the functional integration over
the canonical variables is performed with a flat integration
measure.~There is no preexponential factor, e.g., a func-
tional determinant, which could be interpreted as the non-
trivial measure.! This is obviously a general feature of Yang-
Mills theory in unconstrained variables~provided one
chooses a gauge condition which is canonically conjugated

to the Gauss’ law constraint! and could, perhaps, have been
anticipated in view of the fact that the Faddeev-Popov kernel
is given byMab(x,y)5$ f a(x),Gb(y)%, where $,% denotes
the Poisson brackets.

The cancellation of the Faddeev-Popov determinant
against the determinant arising from the resolution of Gauss’
law was also obtained in Ref.@19#, where the gauge was
fixed by demanding that the antisymmetric part of the matrix
Ei
a vanish. In that case Gauss’ law requires the vanishing of

the antisymmetric part ofAi
a and one ends up with a func-
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tional integral over the symmetric parts ofAi
a andEi

a where
unfortunately the remaining electric field variables cannot
explicitly been integrated out. In this respect the present ap-
proach has the advantage over Refs.@19,20# in that the re-
maining unconstrained electric field variables in Eq.~5.6!
can still be integrated out in closed form. This will be done
in Sec. VII.

Before concluding this section let us notice thatassuming
a flat integration measure the functional integral representa-
tion ~5.6! could have also been derived by starting from the
Yang-Mills Hamilton operator in unconstrained variables ob-
tained in Ref.@31# in the canonical operator approach and
following the standard procedure@39#. In this sense the
present functional integral derivation of the unconstrained
Yang-Mills theory~5.6! is equivalent to the canonical opera-
tor approach of Ref.@31#. We believe, however, that the
functional integral representation derived in the present pa-
per, Eq.~5.6!, is more flexible than the operator approach
when it comes to an approximate solution of the theory.

Finally a comment on the gauge fixing is in order. We
have fixed the gauge in such a way to remove the compo-
nents of the gauge fieldAi(x) which are canonically conju-
gate to those components of the electric fieldEi(x) which
are eliminated by Gauss’ law. This has led to the gauge
conditions~3.8!, ~4.16!, and ~3.17!, which eliminateA3

ch,a'

and makeA3
n5a3

n independent ofx3. These gauge con-
straints do, however, not yet fix the gauge completely but
leave a residual gauge invariance which consists of~i! ~glo-
bal! permutations of the color indices of the fundamental
representations, i.e., elements of the Weyl~sub!groupSN of
the gauge group SU(N), ~ii ! global Abelian gauge transfor-
mations, and~iii ! displacement transformationsV5e2ax,
with a an arbitrary but fixedc-number three-vector. These
residual gauge symmetries were also found in Ref.@31#. For
completeness we work out the emergence of these residual
gauge symmetries in the present functional integral approach
in Appendix C.

VI. WILSON LOOP

Below we evaluate the potential between two static color
charges or, equivalently, the Wilson loop5

W~C!5 K TrPexpS 2 R dxmAm~x! D L ~6.1!

in the gauge-fixed theory defined by Eq.~5.6!. For simplicity
we consider a planar rectangular Wilson loopC, which by
Lorentz invariance can be placed into the 0-3 plane. One
should note here, however, that the present approach~5.6!
has not been formulated in a manifestly Lorentz covariant
way, although all Green functions~calculated in the full
theory! will respect Lorentz invariance. As a consequence
the quality of approximations will depend in general on the
chosen Lorentz frame.

The present approach obviously singles out the zero- and
three-axes.~It exactly integrates out theA0 field and elimi-
nates most of the degrees of freedom ofA3 andE3 by gauge

fixing and resolution of Gauss’ law, respectively.! We there-
fore expect that the Wilson loop is most efficiently evaluated
when placed in the 0-3 plane. Then theA'8 field will not
explicitly enter the Wilson loop. Therefore we will ignore it
together with its conjugate variableE'8 since we anyhow
expect the dominant infrared behaviour to be governed by
the a3( x̄),e3( x̄) fields.

6 The generating functional of axial-
gauge-fixed Yang-Mills theory~5.6! reduces then to

Z@J#5E D~a3 ,e3!expH i

g2 FLE d3x̄~e3]0a32
1
2 e3e3!

1E d4a3J32
1
2 E d4xS J0 1

2d̂38d̂38
J01~e'

~0!!2D G J ,
~6.2!

where

e'
~0!5e'uE'5052¹'

1

LE d3yG~2!~x' ,y'!J0
n~y!.

~6.3!

The last two terms in Eq.~6.2! describe the interaction be-
tween static chargesJ0. The last term can be cast into the
form

E ~e'
~0!!252E dx0d

2x'd
2y'J̄0

c0~x0 ,x'!

3G~2!~x' ,y'!J̄0
c0~x0 ,y'!, ~6.4!

where a partial integration has been performed and

J̄5
1

LE dx3J0~x!. ~6.5!

This quantity obviously vanishes in the thermodynamic~in-
finite volume! limit L→` for any localized charge distribu-
tion J0(x). To illustrate the meaning of this term let us con-
sider two opposite Abelian charges (q,2q) separated by a
distanceR. If we place these two charges on a line parallel to
the three-axis, e.g.,

J0
c0~x!5qc0d~x1!d~x2!FdS x32 R

2 D2dS x31 R

2 D G ,
~6.6!

then obviouslyJ̄0( x̄)50 and this term does not contribute.
But it does contribute when we place the charges in the
x2y plane: e.g.,

5Note that in our conventionAm(x) is anti-Hermitian.

6As already mentioned above the gauge adopted in the present
paper is a variant of ’t Hooft’s maximum Abelian gauge@15#. In
these gauges one expects a dominance of the Abelian field compo-
nents, since non-Abelian components are supposed to become mas-
sive and hence irrelevant at low energies. In fact, lattice calculations
performed in the maximum Abelian gauge@16# show that about
95% of the string tension comes from Abelian field configurations
@30#, which is referred to as Abelian dominance.
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J0
c0~x!5qc0d~x3!d~x2!FdS x12 R

2 D2dS x11 R

2 D G .
~6.7!

If we take, for simplicity, the thermodynamic limit
L1 ,L2→` of G(2)(x' ,y'), Eq. ~4.3!,

G~2!~x' ,y'!5 lnux'2y'u, ~6.8!

we receive from Eq.~6.4!, besides an infinite constant, a
logarithmically increasing potential. However, we do not ex-
pect that Eq.~6.2!, which discards all perpendicular degrees
of freedomA'8 ,E'8 can give a realistic description of the
interaction between two charges sitting in the 1-2 plane. As
discussed before the present approach singles out the three-
axis and in fact preserves the rotational symmetry around the
three-axis. Let us therefore consider the axial symmetric
charge distribution~6.6!. In this casee'

(0)50, and from the
second to last term in Eq.~6.2! we obtain the static interac-
tion potential

V5
1

2g2
@d~0!#2q2G~1!~R,0!, ~6.9!

whereG(1) is the Green’s function of2]83
2. If we again take

the thermodynamic limitL→`

G~1!~x3 ,y3!5^x3u
1

2]3
2 uy3&5 1

2 ux32y3u, ~6.10!

we obtain a linearly raising potential

V5sR, ~6.11!

with a string tension

s5
q2

g2
@d~0!#2. ~6.12!

Here it is understood thatd(0) is regularized in an appropri-
ate way. The above obtained interaction potential is in agree-
ment with the findings of the canonical quantization ap-
proach@31#; see also Ref.@42#.

The emergence of the linear confinement potential in the
three-direction should come as no surprise since, except for
the dummyx1 ,x2 dependence, Eq.~6.2! represents the gen-
erating functional for (111)-dimensional Yang-Mills
theory, which is known to confine. In fact, if we ignore the
e'
(0) term @which, as seen above, vanishes in the thermody-
namic limit L3→` for any localized charge distribution
J0(x) and furthermore depends only on the ‘‘dummy’’ coor-
dinatesx1 ,x2# and linearize the term quadratic inJ0 by
means of a fielda0(x), and furthermore perform the integra-
tion overe3, we obtain

Z@J#5E D~a0 ,a3!expH i

g2E d2x'F E dx0dx3@
1
2 ~]0a3!

2

1 ~ d̂3a0!
21a0J01a3J3#G J . ~6.13!

Here the first two terms in the bracket combine tof m̄ n̄
2 , where

f m̄ n̄ 5]m̄a n̄ 2] n̄am̄ , m̄,n̄50,3, ~6.14!

and additionallya3 satisfies, by construction@see Eqs.~3.8!
and ~3.16!#, the gauge

a3
ch50, ]3a3

n50. ~6.15!

In D5111 the corresponding Faddeev-Popov determinant
is an irrelevant constant. Thus Eq.~6.13! represents in fact
the properly gauge-fixed generating functional of two-
dimensional Yang-Mills theory, except for the parametric
x1 ,x2 dependence of the fields. Equation~6.13! can be re-
garded as the strong coupling limit of Yang-Mills theory.
This interpretation is consistent with the result of Ref.@38#
where a strong coupling expansion of Yang-Mills theory was
performed and the leading order was found to be given by
D52 Yang-Mills theory. This result is also confirmed in the
field strength approach@29#.

It is now straightforward to evaluate in the reduced, two-
dimensional Yang-Mills theory~6.13! a Wilson loop in the
0-3 plane, which is most easily done in Euclidean space. One
finds the area law in agreement with the linear rising poten-
tial between static charges as found above.

VII. ELIMINATION OF THE ELECTRIC FIELDS

In the gauged-fixed Yang-Mills theory, where the Gauss’
law constraint has been fully resolved, the electric field vari-
ables occur still only quadratically in the exponent, so that
these variables can be integrated out. The integral overe3 is
trivial. To perform the integral overE'8 it is convenient to
introduce a more compact notation. We define the kernel7

Kab~x,y!5S Ka0b0 0

0 K ā b̄ D
5S 2]83

2da0b0 0

0 2~ d̂3d̂3!
ā b̄ D d~4!~x2y!.

~7.1!

Furthermore, we define

@E'8 ~x!1e'~ x̄!#c5E d4yPcc8~x,y!E'
c8~y!1e'

~0!c ,

~7.2!

wheree'
(0) is defined by Eq.~6.3! and

Pi j
cc85dcc8d i jd

~4!~x,y!

2dcc0S ¹ i

1

n'8
D
x

1

LE dx3Â8 j
c0 b̄~x!d b̄c8d~4!~x2y!.

~7.3!

This quantity fulfills the relations

7Note that, up to an irrelevant constant, DetK gives the square of
the Faddeev-Popov determinant~5.5!.
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¹ i8Pi j
āb~x,y!5¹ j8d

ābd~4!~x2y!,

¹ i8Pi j
a0b~x,y!5

1

LE dx3D̂8 j
a0b0~x!d~4!~x2y!. ~7.4!

In this notation we have

E d4xF S 1]38 G'
n D 21S 1

d̂3
G'
chD 2G

5E d4x@G'K
21G'#

5E d4x$@D̂'8 –~E'8 1e'!1r#K21@D̂'8 –~E'8 1e'!1r#%

5E d4x@D̂'8 –~PE'8 1e'
~0!!1J0#

3K21@D̂'8 –~PE'8 1e'
~0!!1J0#

5E d4x@~E'8P
T1e'

~0!!–~2D̂'8 !1J0#

3K21@D̂'8 –~PE'8 1e'
~0!!1J0#. ~7.5!

Here, we have also introduced the transposed projectorPT

by

~PE'8 !c~x!5~E'8P
T!c~x!. ~7.6!

In this notation we can also write

E ~E'8E'8 1e'
2 !5E ~E'8 1e'!2

5E ~PE'8 1e'
~0!!2

5E @E'8P
TPE'8 12e'

~0!PE'8 1~e'
~0!!2#.

~7.7!

In Eq. ~7.5! and below it is understood that in
D̂'8 5“'1Â'8 the two-dimensional gradient operator¹' is
replaced by the corresponding operator¹'8 with the zero
mode excluded:

^x'u“'8 ux8&5 i (
n'Þ0

n'e
i2pn'~x2x8!/L, n'5~n1 ,n2!.

~7.8!

This is admissible since¹'–E'5¹'8 –E' . The integral over
E'8 can then easily be carried out, yielding, for the transition
amplitude,8

Z@J#5E D~A'8 ,a3!)
x0

Det21/2H

3expH i

g2 FL 1
2 E d3x̄@]0a3~ x̄!#2

2LE d3x̄a3~ x̄!J3~ x̄!

1 1
2 E d4x@e'

~0!2]0A'8

1~D'8 e'
~0!1J0!K

21D'#PH21PT

3@e'
~0!2]0A'8 2D'8K

21~D'e'
~0!1J0!#

1E d4x@e'
~0!]0A'8 2 1

2 ~e'
~0!!2#

2 1
2 E d4x~D̂8'e'

~0!1J0!
1

K
~D̂8'e'

~0!1J0!

2 1
2 E d4x@B~A8!#2G J . ~7.9!

Here, we have introduced the kernel

H5PTP1PTS 2D̂'8
1

K
D̂'8 DP, ~7.10!

which is defined in the space of the spatially periodic two-
dimensional vector functions.

It is instructive to consider the limiting caseA'8 50,
where the kernel~7.10! reduces to

H512¹'K
21¹' . ~7.11!

In this case the terms of the action~7.9! containing the static
sourceJ0 reduce to

FJ0 1KD̂'8PH
21PT~2D̂'8 !

1

K
J02J0

1

K
J0G

A
'8 50

5J0
21

K2D'8
J0 , ~7.12!

and in the limita350 we recover the familiar Coulomb law

FJ0 21

K2D'8
J0G

a350

5J0
1

D8
J0 , D85D'8 1]3

2 .

~7.13!

Note that in the continuum limit the zero eigenvalue ofD8
disappears andD8→D. In Yang-Mills theory the infrared
singular behavior of the static Coulomb law is avoided by
the presence of the Abelian fielda3( x̄). The infrared behav-
ior of Yang-Mills theory, and in particular the confinement
mechanism, should therefore be essentially determined by
this fluctuating field. This is in agreement with the findings
of the previous section.

In Appendix B it is shown that, forA'8 50,

8Note that in Eq.~7.9! from D̂'8 •e'
(0)5¹'•e'

(0)1Â'8 •e'
(0) the term

¹'e'
(0) can be dropped since this quantity does not depend onx3

and hence vanishes when acted on withK21;(]83
2)21.
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Det21/2H5Det1/2KDet21/2~K2D'8 !. ~7.14!

Here

Det1/2K5const3Det1/2~2d̂3d̂3!5const3J ~7.15!

is precisely the Faddeev-Popov determinant~5.5! which, as
shown in Appendix A, up to an irrelevant constant coincides
with the Haar measure of SU(N):

J5)
k. l

1

L2
sin2L

ak~ x̄!2a l~ x̄!

2
, (

k51

N

ak~ x̄!50,

~7.16!

whereak( x̄) are the diagonal elements ofi a3( x̄) ~cf. also
Ref. @35#!.

Note that after imposing Gauss’ law we have obtained
here the Haar measure of the gauge group for the functional
integral over the gauge fielda3( x̄) although we started from
the usual functional integral representation with flat integra-
tion measure but gauge fixed by the Faddeev-Popov method.
This result is a manifestation of the observation@35# that the
standard functional integral repesentation of Yang-Mills
theory with the gauge fixed by the Faddeev-Popov method
fully respects gauge invariance even in the nonperturbative
regime and that, in particular, the Haar measure of the gauge
group~necessary for a projection onto gauge-invariant states!
naturally arises from the Faddeev-Popov determinant.

The Haar measure and hence Det21/2 H vanish for degen-
erate field configurationsa3( x̄), for which two diagonal ele-
ments coincide, i.e.,@a3( x̄)#kk5@a3( x̄)# l l for kÞ l .

Since

Det21/2H5exp~2 1
2 TrlnH !, ~7.17!

we receive an additional contribution to the effective action
of the remaining~physical! degrees of freedom, which rep-
resents an action barrier to keep the system out of the singu-
lar field configurations. Such~energy! barriers have been
also found in alternative formulations of gauge theory in
terms of gauge-invariant variables@24,25#.

Finally, let us make a few comments concerning the rela-
tion of the present approach with those interpreting confine-
ment as a dual Meissner effect arising from monopole con-
densation. In fact, the gauge defined by Eqs.~3.8! and~3.17!
is a variant of maximal Abelian gauge@15,16#. In these
gauges monopoles arise at those singular points in configu-
ration space where the gauge fixing is not unique. The gauge
~3.8! is not unique at those singular pointsx5xS , where the
field a3(x) is degenerate; i.e., two eigenvalues ofa3(x) co-
incide. It is straightforward to show@15,16# that near these
singular points the gauge transformationV(x) necessary to
fulfill the gauge ~3.8! is such that the Abelian part of
V]mV†(x) develops a ‘‘magnetic’’ monopole inm50,1,2
space. Field configurations for which the gauge fixing is not
unique give rise to zeros of the Faddeev-Popov determinant.
In fact in the present case the Faddeev-Popov determinant

DetiD 3;J;ADet K ~7.18!

vanishes at the singular points of degeneratea3( x̄) field con-
figurations. The field configurations of vanishing Faddeev-

Popov determinants define the Gribov horizon, which in the
present context is therefore built up from monopoles.

VIII. CONCLUDING REMARKS

In this paper we have consideredD5311 dimensional
Yang-Mills theory defined on a spatial torus. Using a variant
of ’t Hooft’s maximum Abelian gauge@see Eqs.~3.8!, ~3.17!,
and ~4.16!# we have performed a complete resolution of
Gauss’ law. This has resulted in a functional integral repre-
sentation of Yang-Mills theory which is entirely defined in
terms of unconstrained, gauge-fixed variables. These are the
spatial gauge fieldsAi8 , i51,2, defined by Eqs.~4.2!,
~4.14!, and ~4.18!, the neutralx3-independent part of which
is transverse in the 1-2 plane@see Eq.~4.16!#. In addition an
Abelian x3-independent fielda3( x̄), defined by Eq.~3.16!,
arises, so that the total number of degrees of freedom is that
of 2(N221) fields. This is the correct number of uncon-
strained degrees of freedom of massless Yang-Mills theory
with gauge group SU(N). In this respect the present ap-
proach is more efficient than the pioneering works of Refs.
@19,20# where twice as much integration variables remain,
since in that case the electric field variables cannot be inte-
grated out in closed form.

We have worked here in the Hamilton functional integral
formulation which obviously violates Lorentz covariance.
Furthermore, the adopted gauge also violates spatial SO~3!
invariance but preserves axial symmetry. In this respect the
present gauge is advantageous over the gauge used in Ref.
@43# which violates also axial symmetry. Of course a com-
plete elimination of all gauge degrees of freedom without
violating any space-time symmetry would be preferable.
This has been partly achieved in Refs.@24,25# for SU~2! in
D53,4. This appraoch works in the canonical Hamilton~op-
erator! approach, which obviously violates Lorentz covari-
ance but preserves all spatial symmetries. Unfortunately
there is no direct way to extend this approach to higher
gauge groups SU(N.2), although some attempts have been
undertaken for SU~3!. For SU~2! in D53 a complete cova-
riant, gauge-invariant description has been achieved in the
so-called field strength approach@40# at the expense of a
doubling of the degrees of freedom@28,29#. We consider,
however, the violation of a global symmetry, which can eas-
ily be restored, a minor problem. Of course, the exact Green
functions preserve all space-time symmetries even in gauges
which violate these symmetries.

As was illustrated in Sec. VI the fielda3( x̄) represents the
dominant infrared degrees of freedom, which in particular
are responsible for the emergence of the area law. As a first
step one might include only this Abelian field for a study of
the infrared sector of QCD. In fact, because of our adopted
gauge, this is in the spirit of the Abelian dominance observed
in lattice calculations performed in maximum Abelian types
of gauge@30#.
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APPENDIX A: EVALUATION OF THE FADDEEV-POPOV
DETERMINANT

Below, we evaluate the functional determinant ofi d̂3.
Consider the eigenvalue equation

iD̂ 38
abwn

b5mnwn
a , ~A1!

wherewn has to satisfy periodic boundary conditions inx3.
Multiplying this equation with the generators in the funda-
mental representationTa and using

TaD̂m
abwb5@Dm ,w#, w5waTa, ~A2!

the eigenvalue equation becomes

i ]3w
~n!1@ ia3 ,w

~n!#5mnw~n!. ~A3!

This equation is easily solved, sinceia35 ia3
c0Tc0 is a ~trace-

less! Hermitian diagonal matrix, with real elements
ak[(a3)kk satisfying (k51

N ak50. Hence, the eigenvalue
equation reads, explicitly,

i ]3wkl
~n!1~ak2a l !wkl

~n!5mnwkl
~n! . ~A4!

The periodic eigenfunctions are given by@n5(c,n)#

wkl
~n!5hkl

c eivnx3, vn5
2pn

L
, n50,61,62,...,

~A5!

where thehkl
c denote the vectors of the Weyl basis of

SU(N), which with c5(r ,s), r ,s51,2,. . . ,N, is defined by

hkl
c 5

1

A2
dkrd ls . ~A6!

The corresponding eigenvalues read

mn5mc,n5vn1a r2as c5~r ,s!. ~A7!

For fixedn, there are 2(2
N) eigenvectorswn5(r ,s) correspond-

ing to the off-diagonal elementsrÞs. The corresponding
eigenvalues come in pairsvn6ua r2asu. Since trw (n)50,
there are onlyN21 independent eigenvectorswn5(r ,s) with
r5s, being degenerate with eigenvaluevn . The total num-
ber of independent eigenvalues~for fixed N) is of course
N221.

We therefore obtain, for the determinant under consider-
ation,

Det~ iD̂ 38!5)
n

mn5)
c0

)
n52`

`

mc0,n

5F)
c0

)
nÞ0

vnGF)
rÞs

)
n52`

`

~vn1a r2as!G
5Det~ i ]38!Det~ d̂3!. ~A8!

Note that by definition ofD̂38 the moden50 has to be ex-
cluded forr5s, which is indicated by the prime. The expres-
sion in the first bracket yields an irrelevant~diverging! con-
stant, which can be absorbed into the renormalization of the
functional integral.

Using

sinx5x)
n51

` F12S x

pnD
2G , ~A9!

the expression in the second set of brackets can be trans-
formed to

Deti d̂35)
rÞs

~a r2as!)
n51

`

@~a r2as!
22vn

2#

5const83)
rÞs

~a r2as!)
n51

` F12S a r2as

vn
D 2G

5const3F)
rÞs

2

L
sinL

a r2as

2 G
5const3)

r.s
F2LsinL a r2as

2 G2. ~A10!

Thus up to an irrelevant constant this determinant agrees for
( r51

Na r50 with the Haar measure of the group SU(N):

J~La!5)
k. l

sin2L
~ak2a l !

2
. ~A11!

APPENDIX B: EVALUATION OF Det H

In what follows, we work out the functional determinant
Det H for A'8 50. In this limit H is block diagonal in color
space; i.e., it has no matrix elements between the neutral and
charged color space:

Hab5S Ha0b0 0

0 H ā b̄ D . ~B1!

This is because the same is true for the matrixK, Eq. ~7.1!.
Therefore, the functional determinant DetH factorizes as

Det H5Det~n!HDet~ch!H. ~B2!

Since the color neutral part ofH is given by

Hi j
a0b05da0b0S d i j1¹ i8

1

~]38!2
¹ j8D . ~B3!
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Det(n)H is an irrelevant constant, which will be ignored in
the following.

For the evaluation of Det(ch)H we consider the corre-
sponding eigenvalue equation

Hi j
ā b̄f j

b~x!5mf i
a~x!, ~B4!

which with the explicit form ofH ā b̄ reads

2¹ i8~K̄
21! ā b̄¹ j8f j

b~x!5~m21!f i
a~x!. ~B5!

Here, the eigenfunctions have to satisfy periodic boundary
conditions and we have introduced the abbreviation
K̄52d̂3d̂3, which is the matrixK, Eq. ~7.1!, in the charged
subspace.

The eigenfunctionsf i
b(x) represent two-dimensional spa-

tial vectors, which we can split into longitudinal and trans-
verse parts,

f i
b~x!5f i

b~x!T1f i
b~x!L, ~B6!

satisfying

] if i
b~x!T50, ] if i

b~x!L5] if i
b~x!. ~B7!

Obviously any~spatially! transverse vector functionf i
b(x)T

gives rise to a zero eigenvalue of¹ iK
21¹ j and hence to an

eigenvaluem51 of H.
The longitudinal partf i

a(x)L gives rise to a nontrivial
eigenvaluemÞ1. For these eigenvalues Eq.~B5! can be sim-
plified.

Operating on Eq.~B5! from the left with¹ i8 and defining

w ā~x!5¹ i8f i
a~x!, ~B8!

the eigenvalue equation becomes

2D'8 ~K21! ā b̄w b̄5~m21! w ā. ~B9!

Therefore the nontrivial part of the determinant ofH is given
by

DetH5Det~12D'8K
21!. ~B10!

Note that the kernel of the right-hand side~RHS! is a matrix
in color and functional space but a scalar in ordinary space,
contrary toH which is also a matrix in the two-dimensional
Euclidean space spanned by thexi51,2 axis. The missing di-
mension on the RHS is due to eigenvaluesm51 of H. For
later use it will be convenient to separate offK21, yielding

DetH5
Det~K̄2D'8 !

DetK̄
. ~B11!

Since i d̂3 is the Hermitian operator,K52d̂3
2 is positive

semidefinite, while (2D'8 ) is strictly positive definite.
Therefore, (K̄2D'8 ) is a positive definite operator and con-
sequently Det21/2(K̄2D'8 ) is nonsingular, even for field con-
figurationsa3( x̄) for which K̄ has zero eigenvalues. These
field configurations do not contribute to the transition ampli-

tude due to the presence of Det1/2 K̄, see Eq.~7.9!. Note that
this determinant agrees with the Haar measure of SU(N)
given in Appendix A.

APPENDIX C: RESIDUAL GAUGE INVARIANCE

The spatially periodic boundary conditions to the gauge
fields Ai(x) restrict the gauge transformationsAi→Ai

V to
those gauge functionsV(x), which satisfy the equation

@Di ,Ṽk~x!#50, ~C1!

where

Ṽk~x!5V†~x1Lek!V~x!. ~C2!

For simplicity we have set hereL15L25L35L. This equa-
tion, which has to be fulfilled for allAi(x) and all
k51,2,3, is solved for

Ṽk~x!5Znk, ~C3!

with

Zn5e2fn5ei ~2pn/N!, n50,1,2,. . . ,N21, ~C4!

being an element of the center of the gauge group. The center
of the group is defined by the set of elements commuting
with all elements of the group. Herefn is an element of the
Cartan algebraH. For SU~2! the center of the group is given
by

fn5050, Z051,

fn5152 ipt3 , Z1521. ~C5!

Equations~C2! and ~C3! imply

V~x1ekL !5Zn*V~x!. ~C6!

The gauge conditions chosen above@see Eqs.~3.8!, ~3.17!,
and ~4.16!# do not yet fix the gauge completely. There is a
residual gauge symmetry left, which will be exhibited below.

First we note that all three gauge-fixing conditions are left
unchanged under permutations of the color indicesk,l of the
fundamental representationTkl

a for the gauge group SU(N).
Such permutations of the basis color vectors are generated by
those global gauge transformationsSPSU(N), which are
N-dimensional matrix representations of the symmetry group
SN ~group of permutations ofN elements!. These transfor-
mations form the Weyl group. For SU~2! the Weyl group
consists of two elementsS051 andS152 i t152T1, which
correspond, respectively, to the trivial permutation and to an
exchange of the two color indices. The nontrivial permuta-
tion in fact representsa rotation in color space around the
one-axis through an anglep:

S152 i t15e2 ip~t1/2!5epT1. ~C7!

Note thatS1 is not an element of the Cartan algebra. These
considerations can obviously be extended to larger gauge
groups SU(N.2).
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Besides the above discussed global residual gauge sym-
metry the gauge conditions~3.8!, ~3.17!, and~4.16! are also
invariant under the so-called displacement symmetry
@41,31#. Let us show how this comes about. The gauge con-
dition A3

ch50 leaves residual gauge transformations of the
form

V5U~x!S, U~x!5e2v~x!, v~x!PH, ~C8!

where SPSN and U(x) is a gauge transformation in the
maximal Abelian subgroup~invariant torus!.

The second gauge condition]3A3
n50 is left invariant by

gauge transformations of the form~C8! provided that

]3]3v~x!50. ~C9!

This equation is satisfied ifv(x) is of the form

v~x!5v~0!~ x̄!1v~1!~ x̄!x3 , v~0!~ x̄!,v~1!~ x̄!PH.
~C10!

The quasiperiodic boundary condition to the gauge function
~C6! requires

e2v~1!~ x̄!L5Zn3
* 5efn3. ~C11!

This equation has to be satisfied for allx̄ and is solved for

v~1!~ x̄!5
1

L
~2p ik32fn3

!:5a3 , ~C12!

with k35dia(k3
(1) ,k3

(2) , . . . ,k3
(N)) being a N-dimensional

traceless diagonal matrix,( i51
N k3

( i )50, with integer entries
k3
( i ) .

Finally, the third gauge constraint restricts the residual
gauge transformations to such a function, satisfying

¹'–¹'@v~0!~ x̄ !1 1
2 Lv~1!~ x̄!#50, ~C13!

which in view of Eq.~C12! reduces to

¹'¹'v~0!~ x̄!50, ~C14!

which implies

v~0!~ x̄!5b~x0!1a'~x0!x' , b,a'PH. ~C15!

The quasiperiodic boundary condition~C6! requires the
a i(x

0) to satisfy the relation

e2a i L5Zni
*5efni, ~C16!

which is satisfied for

a'5
1

L
~2pk'i2fn'

!, ~C17!

with k'5dia(k'
(1) ,k'

(2) , . . . ,k'
(N)) being again a traceless di-

agonal matrix with integer entriesk'
( i )5(k1

( i ),k2
( i i )) satisfying

( i51
N k'

( i )50.
The residual gauge symmetry left after the three gauge

constraints have been implemented is therefore given by

V~x!5Se2~b1ax!. ~C18!

Besides the discrete symmetryS generating the permutation
of color indices the residual gauge symmetry consists of a
global Abelian gauge transformatione2b and the so-called
displacement symmetrye2ax.
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