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The Yang-Mills functional integral is studied in an axial variant of 't Hooft's maximal Abelian gauge. In this
gauge Gauss' law can be completely resolved resulting in a description in terms of unconstrained variables.
Compared to previous work along this line starting with the work of Goldstone and Jackiw one ends up here
with half as many integration variables, in addition to a field living in the Cartan subgroup of the gauge group
and inD —1 dimensions. The latter is of particular relevance for the infrared behavior of the theory. Keeping
only this variable we calculate the Wilson loop and find an area [88556-282(97)00404-9

PACS numbgs): 11.15.Tk, 11.15.Kc, 11.15.Me

[. INTRODUCTION relation functions, which in turn are fed by the lattice calcu-
lations (see, e.g.[11]).

It is a common belief that the fundamental interactions are Several analytic approaches have been proposed to ex-
described by gauge theories. This is, in particular, true foplore the nonperturbative features of strong coupling Yang-
strong interactions, which are assumed to be described hMiills theory, e.g., the strong coupling lattice expandi8hor
QCD. This theory has been tested in the high energy regimghe small volume expansioi2,13. A crucial point in all
where perturbation theory is applicable due to asymptoti@nalytical approaches to Yang-Mills theory is gauge fixing,
freedom. On the other hand, low energy hadron physics rewhich cannot be performed in a unique way due to the ex-
quires a nonperturbative treatment of QCD. This regimeistence of Gribov copiegl4].
which is ultimately related to the confinement problem, is Most analytic approaches to Yang-Mills theory are based
much less understood. Perturbative calculations indicate th@0 the Weyl gaugé\,=0, where Gauss’ law has to be in-

the confinement phenomenon is due to the non-Abelian ndorced as a constraint to guarantee local gauge invariance
ture of Yang-Mills theory. Furthermore, one-loop calcula- [17]. Violation of Gauss' law generates color charges during

tions show that the perturbative Yang-Mills vacuum is un-f[he time e_volution and, by this leaking of col_or, cpnfinement
stable[1] and various models of the Yang-Mills vacuum is lost. This fact has recently been emphasized in R,

have been designed as, for example, the Copenhagé’}ﬁhere explicit projection on gauge-invariant states has been
vacuum[2], the instanton iiquid modé3] ,which extends performed in the construction of the path integral represen-

. . tation of the Yang-Mills transition amplitude. Not surpris-
the '”Sta”tor.‘ gas pictuid], the dl_JaI supercond_uct@S], or ingly projection onto gauge-invariant states requires a com-
the stochastic vacuufi]. The various models aim at differ-

act integration measurgéhe Haar measure of the gauge

ent aspects of_strong intergction; e.g., the instar_non mod_e oup, reminiscent to the lattice approadin fact, the ap-
seem to be suited to explain spontaneous breaking of chirgliq,ch of Ref[18] can be obtained from the lattice formu-

symmetry [7], while the Copenhagen vacuum, stochasticiation by taking the continuum limit in the spatial directions
vacuum, or the dual superconductor focus on the color congpjy.)
finement. Several approaches have been advocated, which explicitly
A rigorous approach to strong coupling Yang-Mills resolved the Gauss’ law constraint by changing variables,
theory is provided by lattice Monte Carlo calculatiofd, resulting in a description in terms of a reduced number of
which have been developed to a high level of sophisticationunconstraint variables. These approaches are based on the
This approach has given much insight into the nature of th&chralinger functional formulation of Yang-Mills theory
Yang-Mills vacuum. The great successes of lattice calculaf17]. Reference$19,20 use variants of the unitary gauge,
tions are in low energy hadron physi@shere confinementis while in Ref. [21] the Coulomb gaug&/ A=0 was used.
perhaps not of much relevancid]. However, a complete Reference$19,2Q basically end up in a description in terms
understanding of the Yang-Mills theory will probably not be of gauge-invariant variablegurther approaches along these
provided by the lattice simulations alone but requires alsdines are proposed if22,23).
analytic tools. For some applications of lattice QCD a sepa- Recently alternative descriptions of Yang-Mills theory in
ration of scales is required and input from perturbationterms of gauge-invariant variables constructed either from
theory is neededsee, e.g.[10]). Also the interpretation of the magneti¢24] or electric[25] fields have been proposed.
the lattice results sometimes requires or at least is facilitateth Ref. [26] the long wavelengtlistrong coupling limit of
by modeling properties of the Yang-Mills-vacuum-like cor- the formulation of Ref.[24] has been studied, exploiting
methods from the description of collective excitations of
atomic nuclei. Let us also mention an early atterhp]
*Permanent address. where the self-dual sector @ =4 Yang-Mills theory has
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been formulated in terms of gauge-invariant variables. In avhich satisfy the same commutation relati@l). Through-

similar fashion in Refs[28,29 the D=3 Yang-Mills func-  out the paper we shall indicate the adjoint representation by

tional integral has been expressed in terms of the gaugehe caret. For a quantity? living in the gauge group we

invariant variables introduced i24]. define the fundamental and adjoint representations, respec-

Recently, QCD on a spatial torus has been considered itively, by

the Weyl gaugeA,=0 in the canonical quantization ap- R A

proach[31]. Using a(partia) axial gauge, the resolution of x=xT%, x=x°T4 (2.9

Gauss’ law has been achieved by applying unitary gauge

transformations, which rely on quantum field operators. ThigVe also use the Cartan decomposition of the gauge group

results in a Schidinger description in terms of unconstraint

variables, where the resulting Hamiltonian is nonlocal. It is G=H®G/H, 2.9

fair to say tha.‘t at the moment we ha_ve I|tt_le experience Wltr\/\/here H=U(1)N"! denotes the Cartan subgroup of the

fﬁé\gﬂgsfusnecet'og‘g[asﬁhg?g]irrmeg;’st'gc;'?n ?ﬁgr}hunrgtigﬁg gauge group an@/H is the corresponding coset space. Fur-

(operato} ap;pr.oaltch. matrix eler’nents are given by thermore, we use the indices with index zeag,bg, ..., to

(D—1)-dimensional functional integrals. Therefore it might denote a generator of the Cartan subgrolifo<H,
gra’s. 9" a0 Tho1=0, while the indicesa.b, ... arereserved for

be more convenient to use th®-{dimensional functional i  th ; &H. A dinalv th
integral representation from the very beginning. In thedenerators ot the coset spadaH. Accordingly the gauge

present paper | perform a resolution of Gauss’ law in thePotentialAi(x) is decomposed as

functional integral representation of Yang-Mills theory. For A =AM+ ACh 2.6
this purpose | will use a variant of 't Hooft's maximum Abe- oo '

lian gauge[15], which is the analogue of the gauge used in n_ af0Tag ; . _
[31] to time-dependent classical fields. It is the hope that th(\aNhereﬁ;' Ad'ATch I.|s thg gaﬁge FOtEntlalfOL the Cartan sub
functional integral formulation will facilitate in finding ap- group H and A7 lives in (the algebra ofthe coset space

propriate approximation schemes. Furthermore, the func®/H- With respect tdcolon charges of the Cartan subgroup

tional integral approach provides more direct acccess to the: A is neutral, whileA{" is charged.
topological properties of the Yang-Mills vacuum and to nu-  We also introduce the covariant derivative by
merical simulations, exploiting Monte Carlo techniques. D =g +A 2.7
The balance of the paper is as follows. In order to set wo Tl TR :
notation and conventions, in Sec. Il the functional integral

o X _ ) X and the field strength tensor
description of Yang-Mills theory is briefly reviewed and

some relevant features are discussed. In Secs. Il and IV we F.=[D,.D,]=F2T?

fix the gauge and resolve the Gauss’' law constraint. The .

Faddeev-Popov determinant is evaluated in Sec. V. In Sec. F2,=d,A%—3,A2+fabeAP A (2.9
v v vl Y7l .

VI the Wilson loop is evaluated, thereby including only the

dominant infrared unconstrained degrees of freedom. In Setnder a gauge transformatidd(x) € SU(N) the gauge po-
VIl the electric field variables are integrated out, resulting intential transforms as

a theory in unconstrained degrees of freedom of the gauge

potential. A short summary and some concluding remarks AM—>A2=Q(DMQT)=QAMQT+Q((9”QT). (2.9
are given in Sec. VIIl. Some calculations are relegated to the ) ) ) o
Appendixes. In the Hamilton formulation of Yang-Mills theory, which is

based on the Weyl gauge

Il. HAMILTONIAN FORMULATION
OF GAUGE THEORIES

Below we briefly summarize the essential ingredients ofh® dynamical vaariables are the spatial components of the
the path integral quantization of Yang-Mills theory. Special9auge potentiad’. We shall use spatially periodic boundary
emphasis is put on the implementation of gauge invarianceconditions for the field variables

We consider the gauge grou@=SU(N) with anti- a _

Hermitian generator$? satisfying the commutation relation Al (L) =Ai(X), (2.13)

Ay(Xx)=0, (2.10

[T2,Tb]=fabere (2.1) wheree® denotes a three-dimensioriapatia) unit vector, so
’ ' that we consider Yang-Mills theory on a three-dimensional

where f2P¢ are the structure constants. We choose the starforus. We have not yet specified the boundary condition in

dard normalization the time direction.
Let |C) denote an eigenstate ofAi(x), i.e.,
tr(T2TP) = — 3 5%, (2.2 Ai(x)|C)=Ci(x)|C), whereCi(x) is a classical field func-

tion. The gauge-invariant transition amplitude between static
Later on we will also make use of the generators in thenitial and final field configuration#\; (xo=0x) =C{(x) and
adjoint representation defined by Ai(xo=T,x)=C/(x) is defined by[33,18,34

(T)pe=— 12, (2.3 z[C",C']=(C"le "TP|C"), (212
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where In Ref. [35] it was explicitly shown that the gauge-
5 L invariant partition function(2.16) is given by the standard
g functional integral representation
H=f d3x<7E?(x)E?(x)+EZB?(x)Bf‘(x) grairep

(2.13 Z:f DA, Sre™ SIAI+iOMS], (2.22

is the Yang-Mills Hamiltonian with bare coupling constant
g, electric field E3(x)=6/i 5A%(x), and magnetic field where
BR(X) = 3€x;jFj(x). Furthermore,P is the projector onto

. . 1
gauge-invariant states, SYM[A]:4_ng d*x FZV(X)Fiv(X) (2.23
PIC)=2 efi"GJGDM(Qn)lCQ”) (2.14 s the usual Yang-Mills action and
n
1 *
Here® is the vacuum anglgl7] and the functional integra- V[A]= 32772f d4fo‘wFfw (2.29

tion with respect to the Haar measuyw€()) of the gauge
group extends over all time-independent gauge transform
tions Q,(x) with winding numbem. For a gauge transfor-
mation Q) (x) the winding number is defined by

45 the Pontryagin index Witﬁl’ivz %eMmFKA being the dual
field strength. The functional integration runs over all tem-
porally periodic gauge field configurations ,(xo=T)
=A,(X=0) and it is understood that the gauge fixing is

1
n[Q]= Wf d*Xeitr(RIRRY),  Re=Q4,0 " included by the Faddeev-Popov method as indicated in Eq.
(2.22 by Sgr.
(2.19 At first sight one may wonder that E(R.22 reproduces

the gauge-invariant partition functiof2.16 inspite of the
missing Haar measureHowever, as explicitly shown if85]
the Haar measure arises from the Faddeev-Popov determi-
nant. Similar investigations have been previously performed
in Ref. [33].

The equivalence proof between Ed2.16 and (2.22

[35] relies only on the gauge invariance of the Hamiltonian
Z:f DCi(Cle”"TP|C), (2.16  and holds therefore also true when fermions are included. In
this case the partition function is given by

sz DqDEf DAﬁX;{fﬁﬂquq_Aq

—SYM[A]+i®v[A]), (2.29

As usual we assume here that the gauge funcilgr) ap-
proaches a unique valu@,, for |x|—o, so thatR® can be
compactified taS® andn[] is a topological invariant.

For many purposes it is sufficient to consider the partition
function

which can be easily reduced to the standard form

Z=>, e &, (2.17)

k

with E, being the energy eigenvalues. Using the complete-
ness of the eigenstatée) of H(H|k)=E,|k)) andP?=P it

) where the fermion fields satisfy antiperiodic boundary con-
can be rewritten as

ditionsq(xg=T) = —q(Xo=0). For later convenience we re-
write the partition function as

Z= f Dqu_exp( f qidq

z=J DciZk ¥, (C)e BTw¥ (C), (2.18
Zyw[J], (2.26

where

¥,(C)=(C|P|K) (2.19 “Where

are the gauge-“invariant” energy eigenfunctionals, which zYM[J]:f DA”eX;{—SYM[A]'Ff JMAM+i®V[A])
under a gauge transformatidn,, with winding numbern (2.27

transform as
QN —in® is formally the partition function of a gauge field coupled to
Vi€ =e T (C), (220 44 external color current, =q(\%2)y,q. Equation(2.27)
as is easily inferred from the explicit form of the projector defines the Lagrange representation, which is fully covariant.

(2.14). Assuming proper normalization of the energy eigen-FOr subsequent considerations it is more convenient to use
functionals¥,(C), i.e. the Hamilton formulation which arises from E.27) by

J DCi\If’k‘(C)\Iﬁ(C): Ot s (2.2 lin Ref.[18] it was claimed that the conventional functional inte-
gral representatiof2.22 falls short of guaranteeing gauge invari-
Eq. (2.18 reduces to the standard fort®.17). ance in the nonperturbative regime.
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linearizing the F,;)? term by means of an integration over o A s a
the electric field variabl&?(x) which in view of Eq.(2.11) fﬁaMdzE =Q% Q :f d*xp®. (3.2
has to satisfy the spatially periodic boundary condition
Ei(x+Le)=Ei(x). Then theA, field can be integrated out, periodic electric fields the electric flux through the sur-
yielding the Gauss’ law constraint

face of the box, {dXE, vanishes. Consequently periodic

=46(I'"), (2.28 boundary conditions t&?(x) can only tolerate a vanishing
total charge:

J DAoex;{if d*xAS(x)T3(x)

where Q°=0. 3.3
['(AE)=diEi+[A ,Ei]+Jo=[D; ,Ei]+Jo (2.29 . .

For the resolution of Gauss’ law a proper choice of gauge
is the generator of infinitesimal gauge transformations. Equafixing is crucial. In the past a complete resolution of Gauss'’
tion (2.27 then becomes the Hamilton functional integral law has been achieved in the gaugé‘E?=0 for SU2) in
representation of the partition function of Yang-Mills theory Ref.[19] and an extension to SB) was considered in Ref.
in the presence of an external sourdé=(J°J"), which  [20]. There have been also attempts of a complete resolution
after continuing to Minkowski space and assumi@g=0  of Gauss’ law in the Coulomb gaud@1]. The Coulomb
readg gauge, which is singled out in QED by the absence of radia-

tion of static charges, has proved, however, to be inconve-

nient in non-Abelian gauge theories, in particular for an ex-

Z[C”,C’,J]zf D(A; ’Ei)H S(f%(A,E))6(I'*(A,E)) plicit resolution of Gauss’ law. In this respect axial types of
X gauges are much more convenient as was already realized in

b i L Refs.[36,37 and recently discussed in detail in RgB1],

<[] Detm? (xo)exp{ ?f d*X[E;doAi— 3 where an explicit resolution of Gauss’ law in the canonical

X0 quantization approach has been performed. Below we will

perform an analogous resolution of Gauss’ law in the func-

X(E?E?+B?B?)_Ai‘]i]]- (230  tional integral approach. For this purpose it is convenient to

choose the three-axis as the preferred direction of the axial

gauge and divide the Gauss’ law generator into parts parallel

Here,D(A; ,E;) denotes théflat) functional integral measure . ;
and perpenticular to the three-axis:

over the gauge potentid® and the electric field?. Fur-
thermore, f2(A,E)=0 is the gauge-fixing constraint and . .
DetM?3%(x,y), wherexy=Yy,, is the Faddeev-Popov determi- F(x)=D3Es+I',, I',=D,E, +Jo. (3.9

nant.

In the following two sections we will explicitly resolve If D, were regular, the Gauss' lai=0 could be easily
the Gauss’ law constraind(I'®) and the gauge constraint resolved, leading to an elimination &;. Unfortunately, as
5(f%) in Eq.(2.30, leaving a functional integral over uncon- e will explicitly see below, on the toru3; has always zero
strained, gauge-fixed variables. modes, independently of the used gauge. In fact, sfhg:e

transforms gauge covariantly, its eigenvalues are indepen-

ll. GAUGE FIXING AND PARTIAL RESOLUTION dent of the gauge. Nevertheless, we can exploit the gauge
OF GAUSS’ LAW freedom to caslf)3 in as simple a form as possible. From this
Gauss’ law(2.29 I'2=0 has the generic form point of view the axial gaugé;=0 would be preferable.
However, this gauge condition conflicts with the periodic
VE2=p?, p?=—[A E 1?33, (3.1)  boundary condition. This can be easily seen by considering

the Polyakov line operator
wherep? is the total color charge density. Applying Gauss’

integration theorem it follows Py(x) = Pexp{ 3g XA (XX 3.5
3 - 3M3NAAZ) | .

?In fact in the derivation of the path integral representat@27 ~ whereP denotes path ordering and the integration runs from
the Hamilton formulatior{2.30 arises in an intermediate step of the a piin‘? x=(X,X3) along the three-axis to the point
calculation. In the present case the Hamilton and Lagrange form are= (X,X3+L). Because of the periodic boundary condition
obviously completely equivalent. But in more general cdeag, in ~ on A, the integration in Eq(3.5) runs over a closed loop but
theories with momentum-dependent mag¢he Hamilton form is  nevertheless due to the path orderifig(x) depends on the
obviously the more fundamental representation and the Lagrangstarting pointx. Under a gauge transformation this quantity
form may even not exist. Furthermore, the path integral derivatiortransforms as
shows that, while the integral over the gauge field configurations
has to be taken with temporally periodic boundary conditions
Ai(x°:T,>Z)=Ai(x°=0,>2), the integration over the electric fields Here and in the following we use the convention
is not constrained by any temporal boundary condition. (x)=(x°,x) = (X,X3).
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Pa(x)—P5 (X) = Q(x) P3(x)QT(x), (3.9 S(I'™) = 8(dzE"3+T"7)8(y1) = 8(33 ’3+FE)5(VE), 3
3.1

and one can obviously choose a gauge in whitlix) is
diagonal: where

PE(x)=e%ML ag(x)=agoT%. (3.7 E;=Ez—e; (3.19
However, it is impossible to gauge transfdrs(x) to lives entirely in the subspace of eigenfunctions with nonzero
Pa(x)=1. eigenvalues of;. The constraint of the firsé function can

For the resolution of Gauss’ law it is convenient to follow D€ €asily resolved. Defining b}, the operator resulting from

Ref.[31] and use the gauge d3 when the zero eigenvalue is removed, we obfaiith

B 9sE'3=3d3E']
AS(x)=0, or AZ(x)=0. (3.8
o

S(A4E'3+TT) =

1
E'S+—=TI"].
3 aé 1

(3.19

This condition, of course, does not fix the gauge completely
but allows still for arbitrary Abelian gauge transformations
w(X) e H. We will later make use of this freedom. Let us Hence the neutral part of Gauss’ law eliminates the variable
also mention that the gauge transformation necessary t&'}. In addition we now exploit the residual invariance un-
bring a given gauge field;(x) into the form(3.8) requires  der Abelian gauge transformations to remove also the corre-
in general also topologically nontrivial gauge transforma-sponding conjugate field variable,
tions.

In the gauge3.8) the operatoD is block diagonal with Al=A;—a;, a ZEJ dxzAD, (3.16
respect to the color neutral and charged components:

det]

A 936%P0 0 by imposing the gauge condition
0 D3 J5AY(X)=0. (3.17
since f%P°=0. Hence in this gauge the neutral part of the Since dsA’'3=093A’3, this gauge impliesA’j(x)=0 and
Gauss’ law generator simplifies to hence leaves fromA3(x) only the xg-independent part
a, a, aS(X)
o(x)=d3E "+ T °. (3.10 By construction[see Eqs(3.16 and (3.11)] the reduced
r

o ] . Abelian fieldsaz(x) and e3(x) are canonically conjugated
lwpX
On the space of periodic functionst,(x)=e€“"s,  yarjaples. Note also that the change of variables fAdhto
wn=27-rn/L_the opera_\torag has a zero elgen\_/aluen(=0)_ (A'0,a,) [and correspondingly fronk} to (E',e;)] does
corresponding to &s-independent eigenfunction. For sim- not yield any nontrivial Jacobian sind&'} anda, are or-

plicity of notation we have set hete=Ls. The correspond- thogonal coordinates in the sense that they belong to or-

: o n .
ing projection ofE; onto this zero mode, thogonal subspaces of the Hilbert space of periodic eigen-
1L functions ofids.
es(x)= Ef dx3EN(X,X3), (3.1 The gauge con_o!|t|0|(13.l7) has also the advantage that it
0 enormously simplifies the operat(3.9),
does not enteF"(x), Eq.(3.4), and is hence not restricted by Dab: 57,_ ab bx)=:d gab (3.18
Gauss’ law. 3 8 3 '
Since the eigenfunctions @ belonging to zero and non- which enters the charged part of Gauss’ 8+,

zero eigenvalues are orthogonal in the Hilbert space of peri-
odic functions, the neutral part of the Gauss’ law constraint ra— a;b_Eb_+ re (3.19
separates in the two independent constraints corresponding 8 =8 L '

FO the subspaces of the zero and nonzero eigenvalues. Def'ﬁ:he evaluation of the eigenvalues and hence the inversion

ng of 83 become trivial sinceas(x) is independent oks; see
1L below] Let us also mention that Eq&3.8) and(3.17) define
Ef dx;I'!, T'"=T7-y,, (3.12  a variant of 't Hooft's maximal Abelian gaugd5], which
0 preserves invariance undeg-independent Abelian gauge
we have transformations.

For the time being, let us assume i has no zero
eigenvalue in the charged subspad#’e will later see that
4Thls can be also easily seen in the lattice formulation. Starting ath€ system dynamically avoids configuratiangx) =0, giv-

=0 one can bring the linktJ(x) =exH —aAq(X)] to the gauge  ing rise to zero modes af;.] The charged part of the Gauss’
U3(x)=1 except for the last link terminating at=L, which can-  law can now be used to eliminate the charged pa&pby
not be gauged away due to the periodic boundary condition. using
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= 1 RN Thohe " ’ ” 1 ’
S(T'3)= —— S(E2+(d; H)aPrP). 320  GP(X[ X)) =(X[|—x7Ix')
de'd3 L
. . . 1 1 in, (x| —x])2m/L
Later we will observe that the corresponding functional de- :ano n—ze L0 ;
terminant ded® will be canceled by the Faddeev-Popov o
determinant. n, =(ng,ny), (4.3

We can use now the two constraini3.15 and (3.20

arising from Gauss’ law to_integrate out explicitly the elec-hich obviously satisfies periodic boundary conditions. Note
tric field variables E'J°,ES leaving from E; only the  that the longitudinal projectdrdefined by Eq(4.2) is in fact
Xz-independent neutral pagt, Eq. (3.11). Furthermore, the an orthogonal projectot,-1=1. This follows from the rela-
two gauge constraint63.8) and (3.17) eliminate the gauge tion

variablesAS" andA'}, respectively, leaving from the gauge

potential A; only the neutralxs-independent partiz(x). f 42" o Lo N2 o1
XX A L[ XUX ] — X" y= 6P (x, =X ) — —5,

Since the changes of variables froBf’ to E'$°,e; and LA LXK |Ai| ) X=Xz
analogously fromAZ° to A’S°,a; are trivial; i.e., the corre- (4.9
sponding Jacobians equal 1, we then obtain, from(E&0), where

_ 1 . 2 2

Z[‘]]:j D(AL 1a31EL 163)]] 5(fCO(A))5(}YE) 5(2)(XL !yL):FkE eIkL(XL_yJ')! kL:(L_lnliL_znz)l
X L

(4.5

is the two-dimensional periodic §  function
[6@(x, +eL;,y,)=69(x,,y,)] and the last term in Eq.
(4.4 arises from the fact that i |, Eq.(4.3), the zero mode
n,=n,=0, is excluded. This term, however, does not con-
1 tribute whenl acts on vector field¥;(x) periodic inx, and

4yca - pa_ | 44 X». In fact, from the definition of the longitudinal fiele, ,
+f d™XE L doAL Zf dx Eq. (4.2), we find, by using Eq(4.4),

x |1 Detm?[Det(95)Detd?]~1
XO

i o
xexp[ ?[LJ dBX[egaoa:;_ %63(X)93(X)]

1
LL,L,

X{[dz T2+ (a5~ 'T'1)2+E, E, +B?

1
. Vl.el:tf dX3VLEE—

(3.2)
Here 5(f_°0(A)) denotes the gauge condition necessary tgvhere the last term vanishes for periodic electric fields, so

fix the residual invariance undetz-independent Abelian that we obtain

gauge transformations, which is left by the constrai3t8) 1

and(3.17). This residual gauge will be fixed in the following VLeL:_f dxgV, E". 4.7
section when we resolve the residual Gauss’ lave=0. L

f d*xV,-E], (4.6

The residual Gauss’ lay4.1) then simplifies to
IV. RESOLUTION OF THE RESIDUAL GAUSS’ LAW

=V .e —p?@=0 4.8
The residual Gauss’ law constraint e | -
where
1
YL:EJ dxa(V,-ET+[A, ,E; 1"+ Jp) (4.1) (2) 1 "+35
p == E dX3([AL vEL] +‘]0)' (49)
can be used to remove thig-independent part 7 which  gince by definition,e,, Eq. (4.2, is a curl-free, two-
is longitudinal in the 1-2 planei € 1,2) defined by dimensional vector fieldy, Xe, =0, it has the representa-
tion
l 1 n n
e ::VLA_'EI dxV, EV=IE], (4.2) &= T Vaelbu), @
€

where the scalar potentiad(x) follows from the residual
whereA| is the two-dimensional Laplacia¥,, -V, , inthe  Gauss’ law(4.9):
Hilbert space of periodic functions with the zero mode omit-

ted. Its inverse is defined in the space of periodic functions
by the Green's function pace oTP p(x,)= f d?y, GA(x, y, )pP(y,). (411
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In fact, inserting Egs(4.11) into (4.10 and taking the diver- E'Sh=gS", A=A (4.19

gence we find, with the help of E¢4.4),

1 We can then express defined by Eqs(4.10 and(4.11) as

e =@ 7 == | g2 D=~
Vi-ee=p“=p, p LledeLp '—LleQn’ S N L
(4.12 e ()=Vi | dyG(x, Y )([ALEL]"+I0) ().

. . . 4.2
whereQ" is the total chargéin the Cartan subgrogpwhich (4.20
according to Eq(3.3) has to vanish for periodiE? fields, S0 (Note that only the charge field&", A" enter the commu-
thatp=0 and Eq.(4.10 solves, in fact, Eq(4.8). tator)

For nonvanishing total charg@"+ 0 Gauss’ law requires Similarly we can express the Gauss law generditor
one to abandon the periodic boundary condition to the elecgq. (3.4), in terms of the new variables
tric fields and the second term in E@.6) no longer van-

ishes. Even in this case E@.8) is still solved by Egs(4.10 r'=v,-(E''+e)+[A] ,E[]"+J5,
and (4.11). Therefore the resolution of the residual part of
Gauss’ law leads to the elimination of the longitudinal part rjhz VL'E’Eh_'—[A’ in+eL]+‘]8h' (4.2
e, of the neutral vector fielE] and we are left with the
transversal part Furthermore, since, (x), Eq. (4.20, is independent ok,
i.e., d;e, =d3e3=0, it drops out from
E =E —¢ (4.13
1
as the dynamical quantity. 93 T =—505T", (4.22

0
Note that only the charged parts" and ES" enter p(®, 3

Eq. (4.9, and thuse . Furthermore,e, and E'} live in 414 the neutral part of the Gauss’ law generéda2l) can be

orthogonal subspaces of the Hilbert space of periodic funcrepjaced by

tions in x3. Therefore the change of variables from

(ET E to (E"=E'"+e, ,E™) does not give rise to any I%=v, .E'%+[A! E]%+J%. (4.23

nontrivial Jacobian. Let us also emphasize that after resolu- * + T 0

tion of Gauss’ law(4.8), e, is not an integration variable but Recall that the change of integration variables from

a function ofES", A" and independent of the remaining in- E" _(E'" ) yields a trivial Jacobian equal to 1 since

tegration variable€’?, AT, etc. E'" ande, are orthogonal components Bf in the Hilbert
We can exploit now the residual invariance underspace of periodic functions iRs. The same is true for the

x3—independent Abelian gauge transformgtions, left by thQ:hange of variables from\" to (A’" ,a, ). Therefore, after

constraints(3.8) and(3.17), to remove the field complete resolution of Gauss’ law and implementation of the

gauge-fixing contraints, we are left with the following func-

o no—
a, ()= (A X), (4.14 tional integral representation of Yang-Mills theory:

canonically conjugated te, . Since by definition of the lon-

gitudinal projectorl, Eq. (4.2), this field is curl free, z:j D(E! 1931Ai,as)H Det/\/labDet’l(ag)

V, Xa, =0, and, for periodic field#\, (x), satisfies the re- Xo

lation [cf. Eq. (4.7)] i
. ><exp: ?[LJ d3x(ezdpaz— 3€5€3)
V,-a (x)= [f dxgV, -AT, (4.19

+f d4inaoAi+J' (agds+AlJ])
it suffices to require the gauge

1 _ —lf d’3T,)%+EE] +el +[B(A’ 2”
EJ dxgV, -AT (X,x3)=0 (4.16 2 ) (s TR +el +[BADT)
(4.29
to makea, vanishing: _ _ _
where the residual Abelian gauge constrahtl6 has been
a, =0. (4.17 used to replace the perpendicular fiekd by its two-

dimensional transversal pa&| ; see Eq.(4.18. Further-
In the following we will denote byA| the field satisfying the more, the magnetic fiel@8(A’) is defined in terms of the
gauge conditior(4.16), i.e., reduced field variables due to the implementation of Gauss’
law by
. o . Fis=[D{.ds], ds=ds+as, dz=dz+as,
Sincee, anda, live in the Cartan subgroup, we can trivially - -
extend Eqs(4.13 and (4.18 to the charged field compo-

nents, where they read Fij=[Di.Djl, Di=atAl. (4.29



2338 H. REINHARDT 55
Let us also emphasize that there are no cross terms betweenFurthermore, the gaugé3.8) defines a color-charged
the reduced electric fiel#| and the static electric field, . gauge functional
This is a consequence ¢tix;V, E| =0, which holds due to
the periodicity of the fields.

It remains to calculate the Faddeev-Popov determinantor the above gauge functionds 1) and(5.2) the Faddeev-
which is done in the next section. Popov kernelM?3®(x,y) becomes Xo=Y,)

fa=A2. (5.2

b _ Aab y &3 _
V. EVALUATION OF THE FADDEEV-POPOV M?P(x,y) =D30(x) V46 (x—y)
DETERMINANT

1, ab
- Y Sy _
For the above chosen gauge the Faddeev-Popov determi- + LDL O(X)Vi‘s( (X, =y,
nant is straightforwardly evaluated. The two Abelian gauge- - _
fixing c;onditions(S.l?) and (4.16 are independent of eag:h M3P(x,y)=D2P(x) 6% (x—y). (5.3
other; i.e., they belong to orthogonal subspaces of the Hilbert _ _ _
space of periodic functions imge[0L]. Both conditions This expressions hold so far for arbitrary gauge field con-

can therefore be absorbed into a single gauge constraint féigurations. We need, however, these expressions only on the
the neutral component of the gauge field: gauge manifold, i.e., for those field configurations which ful-

fill the above chosen gauge constraints. Usiiieco=0,
which implieségbf’:O, the Faddeev-Popov kernel reduces at

_ 1L _
f20(x) = 93A20(X,x3) + V —f dxgA%(x,x3). (5.1
(X)=93Ag (X X) + V., Lo 7® L (xXg). (5.1 the chosen gauge orbits to

1
M?@abo Mao; _5a0bO<V§V§5(3)(X_Y)+ EVT_VT_ 5(2)(XJ__yJ_)) 0
MPExy)=| = . (5.4
Mabo ab 1.— —
M ~ TAI00- V6 (x, —y,) 4520 5°%(x~y)
Since this matrix has triangle form, we find for the Faddeev-Popov determinant, finally,
1 —
Det/\/lab(x,y):De{ - ﬁobo(vgvgﬁ?’)(x—ywrvm 6<2>(xi—yi)) Defd3° 6@ (x—y)]. (5.5

It factorizes into contributions arising from the Cartan subgrdinst factop and the coset space. The former one is an
irrevelant constant and will be dropped in the following. The contribution from the coset space can be easily calculated since

the eigenvalues oﬁ?’ are analytically known; see Appendix A. But for the moment we do not need the explicit form of

Det ds.
A glance at Eq(5.5 shows thafthe nontrivial part of the Faddeev-Popov determinant cancels precisely the determinant

Detdg) ! arising from the resolution of Gauss’ law. Consequently 4 reduces to
3
[
Z=J D(E| ,e3,A] ,a@exp{EZ[LJ d3x_(e3(90a3—%e3e3)+f d4in(90Ai—%f d*x

X{(d'5'T,)>+E[E| +€ +[B(A)]%}

]. (5.6)

This is the desired functional integral representation ofto the Gauss’ law constrainand could, perhaps, have been
Yang-Mills theory in unconstrained, gauge-fixed variables,anticipated in view of the fact that the Faddeev-Popov kernel
resulting from a complete resolution of Gauss’ law. Note thats given by M23°(x,y)={f3(x),I'"®(y)}, where{,} denotes

in the unconstrained theory the functional integration oveithe Poisson brackets.

the canonical variables is performed with a flat integration The cancellation of the Faddeev-Popov determinant
measure.(There is no preexponential factor, e.g., a func-against the determinant arising from the resolution of Gauss’
tional determinant, which could be interpreted as the nonlaw was also obtained in Ref19], where the gauge was
trivial measure. This is obviously a general feature of Yang- fixed by demanding that the antisymmetric part of the matrix
Mills theory in unconstrained variablegprovided one Ef vanish. In that case Gauss’ law requires the vanishing of
chooses a gauge condition which is canonically conjugatethe antisymmetric part oA? and one ends up with a func-
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tional integral over the symmetric parts Af andE? where  fixing and resolution of Gauss’ law, respectivglWe there-
unfortunately the remaining electric field variables cannoffore expect that the Wilson loop is most efficiently evaluated
explicitly been integrated out. In this respect the present apahen placed in the 0-3 plane. Then thg field will not
proach has the advantage over R¢i9,2Q in that the re-  explicitly enter the Wilson loop. Therefore we will ignore it
maining unconstrained electric field variables in E§.6)  together with its conjugate variablé] since we anyhow
can still be integrated out in closed form. This will be doneexpect the dominant infrared behaviour to be governed by
in Sec. VIL. the as(x),e;(x) fields® The generating functional of axial-
Before concluding this section let us notice taasuming  gauge-fixed Yang-Mills theory5.6) reduces then to
a flat integration measure the functional integral representa-
tion (5.6) could have also been derived by starting from the i
Yang-Mills Hamilton operator in unconstrained variables ob- Z[J]:f D(ag,e3)exp —
tained in Ref.[31] in the canonical operator approach and 9
following the standard procedurg89]. In this sense the 1
present functional integral derivation of the unconstrained +f d*agds— %f d4x< TR JOHe(lO))z)H’
Yang-Mills theory(5.6) is equivalent to the canonical opera- —dgds
tor approach of Ref[31]. We believe, however, that the
functional integral representation derived in the present pa-
per, Eq.(5.6), is more flexible than the operator approach,,nere
when it comes to an approximate solution of the theory.
Finally a comment on the gauge fixing is in order. We 1
have fixed the gauge in such a way to remove the compo-  €%=e/[g o=V, EJ d®y G (x, .y, )Ig(y).
nents of the gauge field;(x) which are canonically conju- 6.3
gate to those components of the electric figldx) which
are eliminated by Gauss’ law. This has led to the gaugerhe last two terms in Eq6.2) describe the interaction be-
conditions(3.8), (4.16), and(3.17), which eliminateA",a,  tween static charged,. The last term can be cast into the
and makeAj=aj independent ofx;. These gauge con- form
straints do, however, not yet fix the gauge completely but

Lf dx(e3doaz— €se3)

(6.2

leave a residual gauge invariance which consist§)dfglo- (2 o . &

bal) permutations of the color indices of the fundamental (e)=— [ dxd®x, d%, (X0, X, )
representations, i.e., elements of the Wylhgroup Sy of ) —

the gauge group SW), (i) global Abelian gauge transfor- XGP(x,,y1)I(X0.Y1), (6.4

mations, and(iii) displacement transformation@ =e~ *,

with @ an arbitrary but fixecc-number three-vector. These Where a partial integration has been performed and
residual gauge symmetries were also found in R&f]. For
completeness we work out the emergence of these residual
gauge symmetries in the present functional integral approach
in Appendix C.

1
J= Ef dX3\]0(X). (65)

This quantity obviously vanishes in the thermodynaific
V1. WILSON LOOP ﬂnite volume I_imit L—oo for any !ocalizeq charge distribu-
tion Jy(x). To illustrate the meaning of this term let us con-
Below we evaluate the potential between two static colorider two opposite Abelian chargeq, - q) separated by a

charges or, equivalently, the Wilson loop distanceR. If we place these two charges on a line parallel to
the three-axis, e.g.,
W(C)=<TrPex% — f;; dx,A,(x) > (6.1 R R
J(CJO(X) =Qq°08(xy) 8(Xy) 5( X3~ E) - 5( X3+ E) } ;
in the gauge-fixed theory defined by E§.6). For simplicity (6.6)

we consider a planar rectangular Wilson loGp which by _

Lorentz invariance can be placed into the 0-3 plane. On¢hen obviouslyJ,(x)=0 and this term does not contribute.

should note here, however, that the present appréadh  But it does contribute when we place the charges in the

has not been formulated in a manifestly Lorentz covariank—y plane: e.g.,

way, although all Green functiongalculated in the full

theory will respect Lorentz invariance. As a consequence

the quality of approximations will depend in general on the SAs already mentioned above the gauge adopted in the present

chosen Lorentz frame. paper is a variant of 't Hooft's maximum Abelian gaufs]. In

The present approach obviously singles out the zero- anghese gauges one expects a dominance of the Abelian field compo-

three-axes(It exactly integrates out th4, field and elimi-  nents, since non-Abelian components are supposed to become mas-

nates most of the degrees of freedomAgfandE; by gauge  sive and hence irrelevant at low energies. In fact, lattice calculations
performed in the maximum Abelian gau&6] show that about
95% of the string tension comes from Abelian field configurations

Note that in our conventioA ,(x) is anti-Hermitian. [30], which is referred to as Abelian dominance.
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R R f=da,—dya, ,v=0,3, 6.1
(6.7) and additionallya; satisfies, by constructiofsee Eqs(3.9
and(3.16], the gauge
If we take, for simplicity, the thermodynamic limit
Ly, Lo— of G(x, y,), Eq.(4.3), ad=0, g,al=0. (6.15

J52()=q5(x3) 8(X)

GP(x,,y)=Inlx, —y,][, (6.8 In D=1+1 the corresponding Faddeev-Popov determinant
is an irrelevant constant. Thus E@.13 represents in fact

the properly gauge-fixed generating functional of two-
dimensional Yang-Mills theory, except for the parametric

we receive from Eq(6.4), besides an infinite constant, a
logarithmically increasing potential. However, we do not ex-
pect that Eq(fS.Z),’ which djscards aI.I p'erpendi(.:ullar degreesxbx2 dependence of the fields. Equati¢®i13 can be re-

,Of freed_omAi E, can give a rea_llsftlc _descnpt|on of the garded as the strong coupling limit of Yang-Mills theory.
interaction between two charges sitting in the 1-2 plane. Asryiq interpretation is consistent with the result of R&g]
discussed before the present approach singles out the thregr . e 4 strong coupling expansion of Yang-Mills theory was

axis and in fact preserves the rotational symmetry around th‘gerformed and the leading order was found to be given by
three-aX|§. I_‘et us thereforg con3|d(%r) the axial symmetrig, _ 5 Yang-Mills theory. This result is also confirmed in the
charge distributior(6.6). In this casee;’=0, and from the /g strength approacf29].

second to last term in E6.2) we obtain the static interac- |t is now straightforward to evaluate in the reduced, two-
tion potential dimensional Yang-Mills theory6.13 a Wilson loop in the
0-3 plane, which is most easily done in Euclidean space. One
1 finds th law i t with the li isi ten-
V= =—[8(0)122GV(R,0), (6.9 inds the area law in agreement wi e linear rising poten
29 tial between static charges as found above.

whereG™® is the Green’s function of 4'2. If we again take

the thermodynamic limit. — o VIl. ELIMINATION OF THE ELECTRIC FIELDS
In the gauged-fixed Yang-Mills theory, where the Gauss’

law constraint has been fully resolved, the electric field vari-

ables occur still only quadratically in the exponent, so that

these variables can be integrated out. The integral eyés

we obtain a linearly raising potential trivial. To perform the integral oveE| it is convenient to

introduce a more compact notation. We define the kérnel

1
G™M(x3,Y3)= (X3 __0,,§|YS>: 71xs—ysl, (6.10

V=0R, (6.11
with a string tension K2b(x )_( K#obo 0)
2 Y0 ke
o= OO (6.12 i o
=< - ) s (x—y).

Here it is understood tha¥(0) is regularized in an appropri- 0 —(dad3)®P
ate way. The above obtained interaction potential is in agree- (7.2
ment with the findings of the canonical quantization ap-
proach[31]; see also Refl42]. Furthermore, we define

The emergence of the linear confinement potential in the
three-direction should come as no surprise since, except for , — 4 occ! o (0)c
the dummyx, ,x, dependence, Eq6.2) represents the gen- [EL(X)+e (x)] :f dy P (Xy)E[ (y)+e ™,
erating functional for (% 1)-dimensional Yang-Mills (7.2

theory, which is known to confine. In fact, if we ignore the
el® term [which, as seen above, vanishes in the thermodywheree(?) is defined by Eq(6.3) and
namic limit Ly—o for any localized charge distribution

Jo(x) and furthermore depends only on the “dummy” coor- picjc’ =5°¢ 8ij 5¥(x,y)
dinatesx;,X,] and linearize the term quadratic ify, by - -
means of a field(x), and furthermore perform the integra-
tion overes, we obtain

Z[J]sz(aO,as)exp{ éf d?x,

]. (6.13

1)1 f T =,
—M}(ViF) Ef dxgA’ 0 (x) 87 64 (x—y).

L7x

f dXodX3[ 3 (doaz)? 73

This quantity fulfills the relations

+ (daag)?+agdo+asds]

"Note that, up to an irrelevant constant, Degives the square of
Here the first two terms in the bracket combinef%ep where  the Faddeev-Popov determindft5).



VIPExy)=V] 65 (x-y),

V/PER(xy) - f D500 5 (x—y). (7.4

In this notation we have
2 1 ) 2
J' d4X Fn + ,\—Fi

=f d*[T, KT, ]

=f d*x{[D] -(E] +e,)+p]K YD -(E] +e)+p]}

= f d*x[D!

XKD

-(PE| +€”)+J,]

-(PE| +€2)+J,]

- [ anq(ELPT )~ B1)+ 3]
XK~ D! -(PE! +€2)+J,]. (7.5

Here, we have also introduced the transposed projgetor
by
(PE!)°(x)=(E[PT)%(x). (7.6)

In this notation we can also write
| EEre)- | Erer
:f (PE] +€?)2

= f [E|PTPE| +2e”PE! +(€9)?].

(7.7

In Eq. (7.5 and below it is understood that in
> :VL+AL the two-dimensional gradient operat®r, is
replaced by the corresponding opera®f with the zero
mode excluded:

<X¢|Vi|xl>=inzo n, €2 XLy = (nyny).
d

(7.9

This is admissible sinc¥ , -E, =V -E, . The integral over
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Z[J]=f D(A! ,a3)lx'[ Det Y2H

conf s
<

+ %f d*x[el® —g,A!

+(D V43K 1D, JPH PT

dwﬁo%(x_)]z

d¥as(x)3s(X)

X[60~ 301 ~DK~X(D, &% +3p)]

+ [ e a0 - 3 (€07

R 1.
-3 f d*x (D’ & +Jo) (D' &”+ o)

- %f d*x[B(A")]? } (7.9

Here, we have introduced the kernel

D’ 1D P,

LKL
which is defined in the space of the spatially periodic two-
dimensional vector functions.

It is instructive to consider the limiting casa] =0,
where the kerne{7.10) reduces to

H=PTP+PT (7.10

H=1-V K 'v, . (7.1
In this case the terms of the actién9) containing the static
sourceJ, reduce to

1pT A/ 1 1
JORD PH PT(—=D)-do=Jo i Jo
Ai:O

:JOK——MJO’ (7.12

and in the limitaz=0 we recover the familiar Coulomb law

1 l ’ 2
:JOFJO A :AL+(93'

az=0

J J
O _A’ Y0
(7.13

Note that in the continuum limit the zero eigenvaluedf
disappears and’'—A. In Yang-Mills theory the infrared

E! can then easily be carried out, yielding, for the transitionsingular behavior of the static Coulomb law is avoided by

amphtude

8Note that in Eq(7.9) from D/ -e®=V, . +A! .&? the term
Vie(f) can be dropped since this quantity does not depengson
and hence vanishes when acted on with' ~ (5'3) 2.

the presence of the Abelian fiety(x). The infrared behav-
ior of Yang-Mills theory, and in particular the confinement
mechanism, should therefore be essentially determined by
this fluctuating field. This is in agreement with the findings
of the previous section.

In Appendix B it is shown that, foA| =0,
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Det Y2H =Det'’K Det Y3 K—A"). (7.14 Popov determinants define the Gribov horizon, which in the
present context is therefore built up from monopoles.
Here
DetllzKICOI’]SIX Detllz(—d3d3)=COHS[><J (715) VIIl. CONCLUDING REMARKS
is precisely the Faddeev-Popov determinén®) which, as In this paper we have consider&=3+1 dimensional
shown in Appendix A, up to an irrelevant constant coincidesy ang-Mills theory defined on a spatial torus. Using a variant
with the Haar measure of SN{: of 't Hooft's maximum Abelian gauggsee Eqs(3.9), (3.17),
1 — = N and (4.16] we have performed a complete resolution of
J=11 TSinZLM, > a(x)=0, Gauss’ law. This has_ resulted in qfuqctiongl integrgl repre-
k1 L 2 k=1 sentation of Yang-Mills theory which is entirely defined in

(7.1 terms of unconstrained, gauge-fixed variables. These are the

where ay(X) are the diagonal elements bfs(X) (cf. also  SPatial gauge fieldsA, i=1,2, defined by Egs(4.2),
Ref. [35)). (4.14), and (4.;8), the neutralxs-independent part pf which
Note that after imposing Gauss’ law we have obtainedS transverse in the 1-2 plafisee Eq(4.16]. In addition an
here the Haar measure of the gauge group for the functiondibelian Xs-independent fieldaz(x), defined by Eq(3.16),
integral over the gauge fiela(x) although we started from arises, so that the total number of degrees of freedom is that
the usual functional integral representation with flat integraof 2(N*~1) fields. This is the correct number of uncon-
tion measure but gauge fixed by the Faddeev-Popov methogtrained degrees of freedom of massless Yang-Mills theory
This result is a manifestation of the observatjgs] that the ~ with gauge group SWN). In this respect the present ap-
standard functional integral repesentation of Yang-Millsproach is more efficient than the pioneering works of Refs.
theory with the gauge fixed by the Faddeev-Popov methofi19,20 where twice as much integration variables remain,
fully respects gauge invariance even in the nonperturbativéince in that case the electric field variables cannot be inte-
regime and that, in particular, the Haar measure of the gaug@rated out in closed form.
group(necessary for a projection onto gauge-invariant states We have worked here in the Hamilton functional integral
naturally arises from the Faddeev-Popov determinant. formulation which obviously violates Lorentz covariance.
The Haar measure and hence D H vanish for degen- Furthermore, the adopted gauge also violates spatiaB)SO
erate field configurationas(x), for which two diagonal ele- invariance but preserves axial symmetry. In this respect the

ments coincide, i.e[,az(x) J««=[az(x)]y for k#I. present gauge is advantageous over the gauge used in Ref.
Since [43] which violates also axial symmetry. Of course a com-
plete elimination of all gauge degrees of freedom without
Det 2H=exp(— 1TrinH), (7.17  Vviolating any space-time symmetry would be preferable.

This has been partly achieved in Ref24,25 for SU(2) in

we receive an additional contribution to the effective actionD =3,4. This appraoch works in the canonical Hamilfop-
of the remaining(physica) degrees of freedom, which rep- eratoy approach, which obviously violates Lorentz covari-
resents an action barrier to keep the system out of the singance but preserves all spatial symmetries. Unfortunately
lar field configurations. Suclienergy barriers have been there is no direct way to extend this approach to higher
also found in alternative formulations of gauge theory ingauge groups SUW>2), although some attempts have been
terms of gauge-invariant variabl€24,25. undertaken for S(B). For SU?2) in D=3 a complete cova-

Finally, let us make a few comments concerning the relariant, gauge-invariant description has been achieved in the
tion of the present approach with those interpreting confineso-called field strength approa¢d0] at the expense of a
ment as a dual Meissner effect arising from monopole condoubling of the degrees of freedof8,29. We consider,
densation. In fact, the gauge defined by E8s3) and(3.17)  however, the violation of a global symmetry, which can eas-
is a variant of maximal Abelian gaugel5,16. In these ily be restored, a minor problem. Of course, the exact Green
gauges monopoles arise at those singular points in configdunctions preserve all space-time symmetries even in gauges
ration space where the gauge fixing is not unique. The gaugehich violate these symmetries.
(3.8) is not unique at those singular points- x5, where the As was illustrated in Sec. VI the fielah(x) represents the
field az(x) is degenerate; i.e., two eigenvaluesag{x) co- dominant infrared degrees of freedom, which in particular
incide. It is straightforward to shoWl5,16 that near these are responsible for the emergence of the area law. As a first
singular points the gauge transformatifr{x) necessary to step one might include only this Abelian field for a study of
fulfill the gauge (3.8 is such that the Abelian part of the infrared sector of QCD. In fact, because of our adopted
Qa#QT(x) develops a “magnetic” monopole im=0,1,2  gauge, this is in the spirit of the Abelian dominance observed
space. Field configurations for which the gauge fixing is noth lattice calculations performed in maximum Abelian types
unique give rise to zeros of the Faddeev-Popov determinan@f gauge[30].
In fact in the present case the Faddeev-Popov determinant
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Note that by definition oD} the moden=0 has to be ex-
APPENDIX A: EVALUATION OF THE FADDEEV-POPOV cluded forr =, which is indicated by the prime. The expres-

DETERMINANT sion in the first bracket yields an irrelevaiiverging con-
stant, which can be absorbed into the renormalization of the

Below, we evaluate the functional determinantidf.  functional integral.
Consider the eigenvalue equation Using
X 2
n
where ¢, has to satisfy periodic boundary conditionsxif
Multiplying this equation with the generators in the funda-the expression in the second set of brackets can be trans-
mental representation® and using formed to

‘R rab b ”
iD5*%0)= 1,03, (A1) sik=x][ | : (A9)

TADPeP=[D 0], ¢=¢T? (A2) - -
" g Deud3=1;ls (ar—a5>n[[1 [(a;— agd)?— w?]

the eigenvalue equation becomes

2
r @
i030) +[iag, 0" ]=u,0". (A3) =constx [] (ar—aS>H { ( ” )
r#s n
This equation is easily solved, sini@e;= iagf’TCo is a(trace- 2 o, — ag
les Hermitian diagonal matrix, with real elements =consi 1;[ EsmL 2
a=(ag)y satisfying =}, a,=0. Hence, the eigenvalue e
equation reads, explicitly, 2 a 2
=c0nst><H EsinL r2 (A10)
r>s

030+ (= a) el = w0l (A4)
Thus up to an irrelevant constant this determinant agrees for

The periodic eigenfunctions are given py=(c,n)] ._Na, =0 with the Haar measure of the group S

(V) — . C alwpx _an —0+1 + (ay—a))
Pr = M€ 3, OnT T n=0,+x1%+2,.., J(La)=H SiréL k2 ! ] (A11)
(A5) k>
where the 7, denote the vectors of the Weyl basis of APPENDIX B: EVALUATION OF Det H

SU(N), which withc=(r,s), r,s=1,2,... N, is defined by _ )
In what follows, we work out the functional determinant

DetH for A{ =0. In this limit H is block diagonal in color

== 06k Ols - (AB) space; i.e., it has no matrix elements between the neutral and
V2 charged color space:
The corresponding eigenvalues read HabP 0
Hab= _b) . (B1)
My = pen=wptar—as  C=(I,S). (A7) 0 H

For fixedn, there are 220 eigenvectorsy”~ "9 correspond- This is because the same is true for the malttixEqg. (7.1).
ing to the off-diagonal elements#s. The corresponding Therefore, the functional determinant Ddtfactorizes as
eigenvalues come in paire,*|a, — ag. Since tp”=0,
there are onlyN—1 independent eigenvectogg = ("9 with
r=s, being degenerate with eigenvalug. The total num-
ber of independent eigenvalué¢®r fixed N) is of course
N2—-1.

We therefore obtain, for the determinant under consider- aObO— 5200
ation, -=

Det H=Det™HDef"H. (B2)

Since the color neutral part &f is given by

S i +V,’(a 7z V]

) (B3)
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Det™H is an irrelevant constant, which will be ignored in tude due to the presence of Eféﬂ(_, see Eq(7.9). Note that
the following. this determinant agrees with the Haar measure of N§gU(
For the evaluation of DEf"H we consider the corre- given in Appendix A.
sponding eigenvalue equation
— APPENDIX C: RESIDUAL GAUGE INVARIANCE

HEP 62 (x) = m (%), (B4) , . -
-= = - The spatially periodic boundary conditions to the gauge

fields A;(x) restrict the gauge transformatiodg— A" to

which with the explicit form ofH;Freads : g k ]
those gauge functionQ(x), which satisfy the equation

—VIK YV @0 =(u-Dix). (8BS

[Di Q(x)]=0, (C1)
Here., .the eigenfunctions hav<_a to satisfy periodic bou-nd-a%here
conditions and we have introduced the abbreviation
K = — djds, which is the matrix<, Eq. (7.1), in the charged 0,00 = QT (x+ LeYQ(x). (C2)

subspace.

The eigenfunctiongy?(x) represent two-dimensional spa- For simplicity we have set helle;=L,=L;=L. This equa-
tial vectors, which we can split into longitudinal and trans-tion, which has to be fulfilled for allA;(x) and all
verse parts, k=1,2,3, is solved for

S =) T+ B (0", (B6) Qux)=2,, (ek)
satisfying with

HHE =0, G0 = 47(X). (B7) Z.—e =@ n_012 . N-1, (C4

Obviously any(spatially transverse vector functios(x)" being an element of the center of the gauge group. The center

gives rise to a zero eigenvalue BfK ~'V; and hence to an of the group is defined by the set of elements commuting

eigenvalueu=1 of H. ) B with all elements of the group. Hekg, is an element of the
The longitudinal part¢?(x)- gives rise to a nontrivial Cartan algebra{. For SU2) the center of the group is given

eigenvalugu+ 1. For thesé eigenvalues H&5) can be sim- by

plified.
Operating on Eq(B5) from the left withV, and defining $n-0=0, Zo=1,
P2 (X)=V/ $3(x), (B8) $no1=—imrs, Z;=-1. (C5)
the eigenvalue equation becomes Equations(C2) and(C3) imply
SAT(K B b= (u—1) @A (BY) Q(x+eL)=Z5 Q(x). (C6)

Therefore the nontrivial part of the determinant-bis given ~ The gauge conditions chosen abdeee Eqs(3.8), (3.17),
by and (4.16)] do not yet fix the gauge completely. There is a

residual gauge symmetry left, which will be exhibited below.
DetH=Det(1—A] K™Y). (B10) First we note that all three gauge-fixing conditions are left
unchanged under permutations of the color indic¢sf the
Note that the kernel of the right-hand sitRHS) is a matrix  fundamental representatidif, for the gauge group SW().
in color and functional space but a scalar in ordinary spacesuch permutations of the basis color vectors are generated by
contrary toH which is also a matrix in the two-dimensional those global gauge transformatioSs= SU(N), which are
Euclidean space spanned by the , axis. The missing di- N-dimensional matrix representations of the symmetry group
mension on the RHS is due to eigenvalyes 1 of H. For Sy (group of permutations o elements These transfor-
later use it will be convenient to separate Bff !, yielding mations form the Weyl group. For $P) the Weyl group
_ consists of two element3,=1 andS,=—i7'=2T?!, which
DetK—A1) correspond, respectively, to the trivial permutation and to an
DetH = T- (B11) exchange of the two color indices. The nontrivial permuta-
tion in fact representa rotation in color space around the

Sinceid, is the Hermitian operatork = —d? is positive ~ ON€"aXIS through an angfe:

semidefinite, while ¢A]) is strictly positive definite.
Therefore, K—A1) is a positive definite operator and con-
sequently Det"4(K— A1) is nonsingular, even for field con- Note thatS; is not an element of the Cartan algebra. These

figurationsag(x) for which K has zero eigenvalues. These considerations can obviously be extended to larger gauge
field configurations do not contribute to the transition ampli-groups SUN>2).

. _i 1 1
Sl:_l,rl:e (T /2):e7TT ] (C7)
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Besides the above discussed global residual gauge sym- Finally, the third gauge constraint restricts the residual

metry the gauge condition8.8), (3.17), and(4.16 are also
invariant under

form

Q=Ux)S, UXx)=e “™,  w(x)eH, (C8

where Se Sy and U(x) is a gauge transformation in the
maximal Abelian subgroufginvariant torus.

The second gauge conditienA3=0 is left invariant by
gauge transformations of the for(@8) provided that

(93(93(1)(X) =0. (Cg)
This equation is satisfied ib(x) is of the form
0(X) =0 +0PX)x;, ©?(X),0M(x)eH.
(C10

The quasiperiodic boundary condition to the gauge function

(C6) requires

— oD
o= 78 =g,

e

(C1y

This equation has to be satisfied for aland is solved for

__ 1
oV (x)= [ (27iks—¢n,): =as, (C12
with ks=dia(k{",k$, ... k§V) being a N-dimensional
traceless diagonal matrig{L,k{’=0, with integer entries
k{.

gauge transformations to such a function, satisfying

the so-called displacement symmetry
[41,31). Let us show how this comes about. The gauge con-
dition A§h=0 leaves residual gauge transformations of theW

V.V, [0+ Lo (x)]=0, (C13
hich in view of Eq.(C12) reduces to
V.V, 0?(x)=0, (C14
which implies
0 00)=B0x°) +a, (x°)x,, B,a eH. (C19H

The quasiperiodic boundary conditiofC6) requires the
a;(x°) to satisfy the relation

—ail _ 7% _
e '_—Zni—ed’n‘_,

(C16

which is satisfied for

1
aL:E(ZWkLi_¢nL)1 (C17)
with k, =diak{" k@, ... k{V) being again a traceless di-
agonal matrix with integer entridéj)=(k(li),k(2“)) satisfying
=N k=0,
The residual gauge symmetry left after the three gauge
constraints have been implemented is therefore given by

Q(x)=Se Bran, (C18

Besides the discrete symmetBygenerating the permutation
of color indices the residual gauge symmetry consists of a
global Abelian gauge transformatia # and the so-called
displacement symmetrg™ **.
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